(从左到右,京都大学医学大学的教授Naito Yuji和Rhelixa Co.,Ltd。的代表总监Nakaki Ryu
该活动将于2024年11月19日至22日在德国法兰克福举行,为期四天,作为“技术战争”计划的一部分。
- NJIT开发了一种用于水和土壤样品中PFA(全氟烷基和多氟烷基化合物)的高速且高度敏感的检测技术。 -PFA,称为“永久化学品”,是一种在各种产品中发现的人造化合物,从食品包装材料到耐水服装,需要数千年的时间才能分解。有成千上万种不同的类型,当前的测试方法需要成本和时间,环境中的分布程度尚不清楚。 - 新技术包括一种称为造纸喷雾质谱法(PS-MS)的电离技术,该技术分析了样品材料的分子组成,并且比当前的PFAS标准测试方法高10至100倍。 -PFA被离子化并检测到,并且包含的各种PFA物种及其浓度清楚地显示到数万亿(PPT)水平。对于诸如土壤之类的复杂矩阵,使用脱盐的纸陶喷雾质谱法(DPS-MS)用于洗涤抑制PFA的离子信号的盐。这两种方法都显着提高了PFAS检测功能。 PFA的检测极限约为1 ppt,相当于20个奥林匹克大小的游泳池的一滴水。 - We directly analyzed fragments of various food packaging materials, including microwave cooking popcorn paper, instant noodle containers, and fried food and hamburger wrapping paper, and successfully detected traces of 11 types of PFAS molecules, including PFOA (perfluoroctanoic acid) and PFOS (perfluorooctanesulfonic acid), which are associated with cancer risk and suppression of the immune system, within 1 分钟。美国环境保护局(EPA)提议为全国饮用水中的六种PFA设定最大污染水平(MCLS),包括PFOA和PFO。 。- 此外,在2分钟内在局部自来水样品中检测到PFOA的痕迹。在大学的过滤春季样品中未发现PFA的痕迹。此外,使用DPS-MS从40毫克的土壤中识别出两种类型的PFA。我们还将证明空气中包含的PFA的检测能力。 - 还将进行测试,以将这些方法与NJIT BioSmart中心开发的PFA分解催化剂技术相结合。催化剂技术在3小时内分解了饮用水样品中98.7%的PFA。 - 这项研究得到了国家科学基金会(NSF)的支持。
详细信息 1. 姓名:(员工编号) 2. 出生日期: 3. 就业日期: 4. 现工作单位名称: 5. 职务: 6. 需要证明的原因: 7. 所需份数: 8. 备注:
实用技术奖每年向开发出色的实用机器人技术的个人和团体颁发,目的是直接利用机器人技术研发的结果,以促进工业领域的自动化并改善社会生活,并进一步促进机器人技术对社会的贡献。今年,有六个申请。根据该协会的选择规则,法官委员会进行了组织和精心审议,作为第一阶段,已确认六项申请符合法规中规定的条件,并且在文件筛选结果后,审理了三起案件。在第二阶段,这三个案件中的每一个都经过严格的技术评估,因此,基于此,整个委员会都仔细审议了他们是否值得该裁决。结果,所有三个都被选为奖项,最终决定是由董事会做出的。颁奖典礼是在大阪理工学院举行的第42个学术演讲上举行的,主席向接受者颁发了奖励证书。最后,我们要向获奖者表示衷心的祝贺,并祝他们将来一切顺利。 Kiguchi Ryoo,第29届实用技术奖选项小组委员会主席
微塑料的影响 微塑料已经渗入海洋、土壤,甚至我们呼吸的空气中。微塑料的增加已成为环境和人类健康日益关注的问题。生态学家发现,微塑料经常进入饮用水以及盐、蜂蜜和糖等食物中。一些研究表明,人类每年摄入超过 100,000 个微塑料颗粒。*然而,人们对微塑料及其对人体的影响知之甚少。我们确实知道微塑料对环境有重大影响,主要在海洋环境中进行研究。一旦从其原始塑料产品中释放或分离,微塑料就会通过水道传播,最终进入生态系统,这些生态系统是各种海洋生物的家园,包括藻类、浮游动物、鱼、螃蟹、海龟和鸟类。当海洋生物摄入微塑料时,会导致许多健康问题,它们会在体内积累并通过掠食性食物链传递。
在脑类器官中[58]。 (f)TPP制造光子晶体微纳米传感单元[59]。 (g)成像在脑类器官中[58]。(f)TPP制造光子晶体微纳米传感单元[59]。(g)成像
免疫检查点分子阻断剂 ( immune checkpoint blockade , ICB ) 是肿瘤免疫治疗的有效策略之一 , 其中靶向程序 性死亡受体 -1 ( programmed death receptor-1 , PD-1 ) / 程 序性死亡配体 -1 ( programmed death-ligand 1 , PD-L1 ) 的单克隆抗体主要在 TME 中发挥调节免疫细胞功能 的作用。 CD8 + T 细胞是抗肿瘤反应中极具破坏性的 免疫效应细胞群 , 其浸润到 TME 的密度是影响免疫 检查点阻断治疗结果的预测指标 [ 18 ] 。研究表明 , PD- 1/PD-L1 检查点抑制剂与化疗药物联合使用是治疗晚 期非小细胞肺癌的有效方法 , 然而其在肝癌 、 前列腺 癌等实体肿瘤中效果并不理想 [ 19 ] 。为了增强 PD-L1 抗体免疫治疗疗效 , Li 等 [ 20 ] 开发了一种偶联抗 PD- L1 单克隆抗体和负载多西紫杉醇 ( docetaxel , DTX ) 多 功能微泡系统 , 联合超声空化效应增加肿瘤细胞的凋 亡率和 G2-M 阻滞率 , 还可以通过促进 CD8 + T 和 CD4 + T 细胞的增殖 、 降低细胞因子 VEGF 和 TGF-β 的水平来增强抗肿瘤作用。为了提高 PD-L1 抗体在 肝癌中的治疗效果 , Liu 等 [ 21 ] 设计了一种携带 PD-L1 抗体和二氢卟吩 e6 ( chlorin e6 , Ce6 ) 的靶向纳米药物 递送系统 , 该类靶向纳泡可通过 PD-L1 抗体主动靶向 作用 , 促进 Ce6 在肿瘤部位的聚集与释放 , 并通过超 声介导 Ce6 声敏效应促进肿瘤细胞凋亡 、 诱导肿瘤细 胞发生免疫原性死亡 , 同时通过 PD-L1 抗体对 PD- 1/PD-L1 信号通路的阻断促进 CD8 + T 在肿瘤组织中 浸润 , 两者协同发挥抗肿瘤免疫反应。为了增强肿瘤 内部免疫细胞渗透 , Wang 等 [ 22 ] 提出一种将 PD-L1 靶 向的 IL-15 mRNA 纳米疗法和 UTMD 结合的治疗策 略 , 通过声孔效应特异性地将 IL-15mRNA 转染到肿 瘤细胞中 , 激活 IL-15 相关的免疫效应细胞 , 同时阻 断 PD-1/PD-L1 通路 、 诱导免疫原性死亡进而启动强 大的全身免疫反应。 3.3 超声联合载药微泡调节 TME 免疫抑制状态
*2023年底之前的XBI指数价格** **对于2023年的价值,VC资金(基于俯卧撑簿)截至2023年12月15日,更新了其他指标(基于S&P的资本IQ),截至2023年11月30日,更新了最终的年度资金金额,因此最终的年度资金金额可能不足。 ^ Kenvue的IPO在2023年不包括在内,总资金约为38亿美元。 注意:首次公开发行; XBI = S&P Biotech for S&P的资本IQ,美国IPO和M&A的交易包括出版和完成的交易行业,5)制药行业。音调数据尚未由PitchBook分析师审查。
- 芝加哥大学和Argonne国家实验室(ANL)开发了一种新技术,该技术将单晶钻石膜直接粘合到量子和电子技术中的各种材料,包括硅。 Diamond提供了无与伦比的特性,其电子技术具有宽带的带镜头,极好的热导率和介电强度,量子技术可在室温下进行出色的量子传感。但是,由于底物和生长层是同质材料,因此很难将不同材料直接积累到设备中,这需要使用大量钻石。在这项研究中,通过使用基于血浆激活的键合技术,我们通过确保钻石和载体基板的光滑表面成功地粘结了极其平坦的材料表面,准确的厚度和材料的原始材料质量。退火过程促进和加强粘结,从而使钻石膜能够承受各种纳米化过程。在钻石中,每个碳原子与其他四个碳原子之间的电子共价键形成其坚硬,耐用的内部结构。这次,通过在钻石膜的表面上创建许多悬挂的键(无伴侣的键),这是形成了对不同材料“粘合”的表面。结果,钻石膜直接粘合到诸如硅,融合二氧化硅,蓝宝石,热氧化物膜,尼贝特锂等的材料,而无需使用介体进行粘附。与厚度为数百微米的散装钻石(通常是在量子研究中使用的),而是合并了100 nm薄钻石膜,同时保持适合高级量子应用的自旋相干性。 - 这项新技术基于从1940年代开发的大型晶体管的互补金属氧化物半导体(CMOS)的进步,转至现代计算机等中使用的功能强大,精细的集成电路。 - 该技术已获得专利,现在已通过大学的波尔斯基企业家和创新中心进行商业化。这项研究得到了美国能源部(DOE)科学局(SC)的国家量子信息科学研究中心的支持,作为Q-Next中心的一部分。