实用技术奖每年向开发出色的实用机器人技术的个人和团体颁发,目的是直接利用机器人技术研发的结果,以促进工业领域的自动化并改善社会生活,并进一步促进机器人技术对社会的贡献。今年,有六个申请。根据该协会的选择规则,法官委员会进行了组织和精心审议,作为第一阶段,已确认六项申请符合法规中规定的条件,并且在文件筛选结果后,审理了三起案件。在第二阶段,这三个案件中的每一个都经过严格的技术评估,因此,基于此,整个委员会都仔细审议了他们是否值得该裁决。结果,所有三个都被选为奖项,最终决定是由董事会做出的。颁奖典礼是在大阪理工学院举行的第42个学术演讲上举行的,主席向接受者颁发了奖励证书。最后,我们要向获奖者表示衷心的祝贺,并祝他们将来一切顺利。 Kiguchi Ryoo,第29届实用技术奖选项小组委员会主席
欢迎来到 Good Shepherd!- 您来对地方了!如果您有任何疑问或需要,请随时询问引座员或牧师,我们将竭诚为您服务。- 请登录。长凳垫位于每个长凳的末端。请登录并将其传递到排的末端。如果您是访客,请提供联系信息 - 您将收到 Kate 牧师的一封电子邮件/便条,但不用担心 - 除非您愿意,否则我们不会再向您发送其他电子邮件!- 欢迎您在礼拜场所入口处的白色讲台上写下祈祷请求,该请求将在今天的礼拜中包括并宣读,或者在长凳垫内分享祈祷请求。- 此楼层有一个性别中立的卫生间。楼下有额外的卫生间。敬拜中的儿童 儿童(以及他们的噪音和扭动)在敬拜中总是受欢迎的,也是我们教堂的重要组成部分。但是,如果您需要休息,休息室会播放服务音频,楼下还有托儿所。更衣室位于楼下的浴室。圣所后面有儿童敬拜包和书籍。在学年期间,主日学校在上午 9:45 的敬拜仪式期间举行,适合 3 至 12 年级的学生。如果您对主日学校、初次圣餐或坚振礼课程有任何疑问,请联系 Denise Steene,邮箱:education@gslutheran.net 好牧人欢迎声明 好牧人路德教会邀请您踏上信仰之旅。我们欢迎所有年龄、种族、宗教背景、性取向、性别认同、社会经济、婚姻和家庭状况、能力、政治派别和国籍的参与者。事工因多元化而得到加强,我们欢迎所有人参与礼拜、团契、学习和服务。你是上帝的孩子;欢迎你来这里。
*2023年底之前的XBI指数价格** **对于2023年的价值,VC资金(基于俯卧撑簿)截至2023年12月15日,更新了其他指标(基于S&P的资本IQ),截至2023年11月30日,更新了最终的年度资金金额,因此最终的年度资金金额可能不足。 ^ Kenvue的IPO在2023年不包括在内,总资金约为38亿美元。 注意:首次公开发行; XBI = S&P Biotech for S&P的资本IQ,美国IPO和M&A的交易包括出版和完成的交易行业,5)制药行业。音调数据尚未由PitchBook分析师审查。
- 芝加哥大学和Argonne国家实验室(ANL)开发了一种新技术,该技术将单晶钻石膜直接粘合到量子和电子技术中的各种材料,包括硅。 Diamond提供了无与伦比的特性,其电子技术具有宽带的带镜头,极好的热导率和介电强度,量子技术可在室温下进行出色的量子传感。但是,由于底物和生长层是同质材料,因此很难将不同材料直接积累到设备中,这需要使用大量钻石。在这项研究中,通过使用基于血浆激活的键合技术,我们通过确保钻石和载体基板的光滑表面成功地粘结了极其平坦的材料表面,准确的厚度和材料的原始材料质量。退火过程促进和加强粘结,从而使钻石膜能够承受各种纳米化过程。在钻石中,每个碳原子与其他四个碳原子之间的电子共价键形成其坚硬,耐用的内部结构。这次,通过在钻石膜的表面上创建许多悬挂的键(无伴侣的键),这是形成了对不同材料“粘合”的表面。结果,钻石膜直接粘合到诸如硅,融合二氧化硅,蓝宝石,热氧化物膜,尼贝特锂等的材料,而无需使用介体进行粘附。与厚度为数百微米的散装钻石(通常是在量子研究中使用的),而是合并了100 nm薄钻石膜,同时保持适合高级量子应用的自旋相干性。 - 这项新技术基于从1940年代开发的大型晶体管的互补金属氧化物半导体(CMOS)的进步,转至现代计算机等中使用的功能强大,精细的集成电路。 - 该技术已获得专利,现在已通过大学的波尔斯基企业家和创新中心进行商业化。这项研究得到了美国能源部(DOE)科学局(SC)的国家量子信息科学研究中心的支持,作为Q-Next中心的一部分。
为病人祈祷 Leonard Caltabiano、Joyce Ratushny、Kristen Tonnesen、Brendan Gould、Olivia Marie、Baby Marina Grace、Donald Martino、Baby Ryan Crystal LaCalamita、Catherine O'Neill、Marc Baboff、Owen Chapman、Carmine Lagattuta、Bill Luce、Tony Kennedy、Allison Arbeiter、Mark Vonilla、Connie Rigert、Lucille Oppedisano、Nick Tihal、Phil Hogan、David Kriegsman、Lillian Harrington、Janine Giovelli、Kathy Boggia、John Morgan、Mike Rodriguez、Judith Moroz、Ann Bermudez、Dominick “50”、Kathleen Jacobi、Ann Scardino、Rick Bodt、Penny Dowd、Mike (Repel) Muller Jr.、Grayson Danielski、Anna Rose Regan、Christa Erario、Janina Wiczynski、Luciana Maujeri、约瑟芬·马里诺·佩里 (Josephine Marino Perry)、约瑟夫·德塞纳 (Joseph DeSena)、丽莎·赫尔森 (Lisa Hulsen)、拉蒙·安东尼奥·德尔加多 (Ramone Antonio Delgado)、马克·博尼托 (Mark Bonito) 我们请您发送电子邮件至 jloring@sscmdp.org 或在 X122 留言,注明您生病家人的姓名。
摘要 软件开发人员解决的问题种类繁多。虽然软件工程研究通常侧重于支持解决问题的工具,但开发人员解决问题的策略至少同样重要。在本文中,我们提供了一种新方法,使开发人员能够遵循明确的编程策略,这些策略描述了专家如何解决常见的编程问题。我们定义了明确的编程策略,我们的定义基于软件工程和其他采用更明确的问题解决程序的专业领域的先前工作。然后,我们提出了一种名为 Roboto 的新符号和一种新的策略跟踪工具,它们明确地表示编程策略并将执行策略框架化为人类决策能力与计算机构建流程和保存信息能力之间的协作努力。在形成性评估中,28 名具有不同专业知识的软件开发人员完成了一项设计任务和一项调试任务。我们发现,与可以自由选择自己策略的开发人员相比,被赋予明确策略的开发人员的工作更有条理、更系统、更可预测,但也受到更多限制。使用明确策略的开发人员在设计和调试任务上客观上更成功。我们讨论了 Roboto 及其发现的含义,设想一个蓬勃发展的生态系统,其中包含明确的战略,可以加速和改善开发人员的编程问题解决能力。
先进材料和设备技术在各个领域支撑着我们的生活。它们在智能手机、汽车、机器人和通信功能的信息和通信设备技术中发挥着核心作用。它们通过太阳能电池、可充电电池、功率半导体、磁铁/磁性材料、水和 CO 2 电解池以及分离膜等各种设备和材料为碳中和做出贡献。在医疗保健和医学领域,它们被用于人工微系统,例如针对 COVID-19 病毒的 mRNA 疫苗、用于早期诊断和生物信息监测的高灵敏度传感器设备以及用于预防、诊断和治疗癌症和脑疾病的设备和材料。纳米技术能够在非常小的尺度上观察、控制和处理物质的结构,对于实现这些材料和设备是必不可少的。最近与这一领域有着特别密切联系的世界事件是美国和中国争夺技术霸权而导致的全球供应链不稳定、COVID-19 疫情以及俄罗斯入侵乌克兰。这些世界形势的变化正在破坏“在最合适的地方生产,以提高整体效率”这一全球供应链的前提。作为经济安全最重要的问题,各国都在推行将稀缺资源和供应来源有限的工业产品列入清单、将重要技术恢复到国内生产等政策。冷战结束后持续的全球开放经济运动陷入停滞,民族主义和保护主义的兴起以及经济脱钩即将发生。这样的社会趋势不仅影响着经济领域,也影响着学术界的先进科学研究。国际上对这一领域的另一个重大要求是对可持续发展目标的贡献。特别是,为了在2050年实现碳中和,需要新开发可再生能源利用技术和减少CO 2排放的节能技术、CO 2捕获和利用技术、回收和再利用技术。除了开发这些新技术之外,还需要重新审视以前认为已经建立并优化的生产技术。为了在长期研发的领域取得突破,可能需要从材料和生产工艺的原理层面进行革新,因此这种基础研发非常需要密切的国际合作。在这种竞争与合作并存的困难局面下,日本也在实施双管齐下的政策。在“2050年实现碳中和的绿色增长战略”、“材料创新战略”、“量子技术与创新战略”等国家战略下,各种研发正在蓬勃发展。这些战略的实施是为了应对日本面临的挑战、对国际社会共同目标的贡献、建立经济安全等各个方面。此外,最近特别引人注目的是日本重启先进半导体工艺开发的努力。基于“半导体和数字产业战略”,日本积极投资研究
2.1.4 电解・燃料电池 ..。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。140 2.2 バイオ・医疗応用 ..。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。149
ken-ichi Yamada,Shun Ishibashi,Naohiro Sata,Marcus Conrad,Masafumi Takahashi#