98 玉晶光电(厦门)有限公司GENIUS ELECTRONIC OPTICAL (XIAMEN) CO., LTD. 61 0 0 61
这次访问的目的是研究日本高等教育的经验,尤其是专注于丰田大学的教学和研究实践,以及丰田的信息技术教育方法。这次访问的主要重点是探索丰田大学的信息基础设施和与之相关的公司资源。这包括分析Toyo的技术平台如何支持教育,研究和行政流程,以及了解其数据管理和网络安全协议。此外,目的是了解丰田大学教授与IT相关的课程的创新方法,包括将新兴技术(例如人工智能,机器学习和云计算)整合到课程中。这项研究涉及调查丰田大学的教学方法,特别强调使用数字工具和电子学习平台。为了加深对IT领域日本高等教育的理解,我:•探索Toyo University的IT
我的研究兴趣在于蛋白质工程,定向进化和脂质生物学。我在杰里米·巴斯金(Jeremy Baskin)实验室的博士学位工作着重于开发分子工具来研究哺乳动物细胞中的脂质信号传导。这项工作的亮点是膜编辑出版物3,7,8的开发,该工具旨在修改活细胞膜上的磷脂头组。在我在爱丽丝·廷(Alice Ting)实验室的博士后研究中,我一直在工程合成受体和可编程细胞行为和记录的酶。一个关键的成就是Pager出版物11(可编程抗原门控工程受体)的开发,这是一个合成的GPCR平台,该平台将可溶性和表面抗原的检测与多种输出相结合,例如转基因表达,G-蛋白信号传导和实时荧光。Pager通过模块化设计实现了此功能:肽抑制剂会产生自动抑制状态,而策略性地插入了靶抗原的粘合剂以释放这种抑制作用对抗原结合。建立在Pager概念上,我还在开发被感兴趣的蛋白质激活的接近标记酶。展望未来,我计划建立自己的实验室,以开发分子工具,以破译和操纵膜,蛋白质和脂质的复杂而动态的网络。
在气候模型中模拟稳定水同位素体(即同位素组成不同的分子)的丰度,可以与代理数据进行比较,从而检验有关过去气候的假设并在不同的气候条件下验证气候模型。然而,许多模型在运行时并没有明确模拟水同位素体。我们研究了使用机器学习方法取代基于物理的降水中氧同位素组成的明确模拟的可能性。这些方法针对给定的表面温度和降水量场,估计每个时间步长的同位素组成。我们基于成功的 UNet 架构实现卷积神经网络 (CNN),并测试球形网络架构是否优于将地球经纬度网格视为平面图像的简单方法。我们使用 iHadCM3 气候模型对过去一千年的运行情况进行案例研究,发现同位素组成时间变异的约 40% 可以通过跨年和月度时间尺度的模拟来解释,且模拟质量在空间上存在差异。经测试的 CNN 性能显著优于简单的基线模型,例如随机森林和逐像素线性回归。针对平面图像的标准 UNet 架构的修改版本,其预测结果与球形 CNN 的预测结果相当。不同气候模型中同位素实现方式的差异,可能导致在使用与训练模型不同的气候模型获取的数据进行测试时,模拟结果出现显著下降。未来稳定水同位素模拟的研究方向可能侧重于实现稳健的气候-氧同位素关系,或探索可能的预测变量集。
现将2016年10月24日至28日召开的国际海事组织第70届海洋环境保护委员会(MEPC 70)会议的情况和审议结果通知如下。 1.与压载水管理公约相关 压载水管理公约于2004年通过,旨在防止船舶压载水转移对海洋生态系统造成的负面影响。该公约要求船舶在近海交换压载水,或使用符合压载水排放标准的压载水处理系统交换压载水。 该公约经芬兰批准,已于2016年9月8日满足生效要求,并将于2017年9月8日生效。 (一)公约批准情况继芬兰批准后,巴拿马和新西兰也批准了公约,使批准国总数达到54个,占商业航运总吨位的比例为53.30%。 (2)审查安装压载水处理系统的时机 2013年召开的第28届IMO大会将现有船舶安装压载水处理系统的期限延长至公约生效后进行的第一次IOPP换证检验。大会决议 A.1088(28) 获得通过,认识到在上届MEPC 69上,批准了《压载水管理公约》B-3规则修正案草案以反映这一内容,并计划在公约生效后于2018年春季举行的MEPC 72上通过。 在这次会议上,鉴于修理码头能力不足,印度和利比里亚提议将现有船舶装备的强制期限延长至上述修正案之外。经审议,意见分歧,有的意见认为应按照上述修改方案维持强制装货期限,有的意见认为应进一步延长至IOPP换证检查后的适当时间。 为此,建议下届海保会第七十一届会议进一步审议,在保留上届会议结论的上述修正案内容的同时,还纳入有关国家在各国提案基础上提出的替代方案。印度和利比里亚同意。
目录 1.委托研究目的................................................................................................................................ 1 1.0 委托研究目的 (1) 研究课题的最终目标............................................................................................... 1 (2) 为实现最终目标需要克服或澄清的基本问题1(3)针对基本课题、实施项目及其体制的对策 2 1.1 研究开始时设定的研究目的的达成程度 7 1.2 计划制定时未预料到的结果(二次结果)及超出目的的结果 8 1.3研究课题的发展潜力(含间接成果) 9 1.4 论文、专利、学术报告等研究成果 10 1.5 研究实施架构与管理10 1.6 高效执行费用 10 2. 2.1 2019年度实施计划................................................................................................................ 11 (1)实施项目1:非挥发性电解液的开发11
1.外包工作的目的······································································· 1 1.0 委托工作目的 (1) 研究课题的最终目标 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ······························1 (2)为了实现最终目标需要克服或澄清的基本问题。 ······················································· ························· 1(3)基本问题的策略和实施项目及其系统2 1 。1 研究开始时设定的研究目标的实现情况 7 1.2 计划时未预期的结果(次要结果)或超出目标的结果 8 1. div>3 研究课题的潜在发展(包括间接结果) 9 1.4 论文、专利、会议报告等研究成果 10 1.5 研究实施架构与管理 10 1.6 高效执行费用 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 10 2. 2019 财年(报告年度)实施细则 11 2.1 2019年度实施计划 11 (1) 行动项目1:非挥发性电解质开发··························································································································································· ······················11
(从左到右,京都大学医学大学的教授Naito Yuji和Rhelixa Co.,Ltd。的代表总监Nakaki Ryu
该活动将于2024年11月19日至22日在德国法兰克福举行,为期四天,作为“技术战争”计划的一部分。