摘要:大多数使用机载激光扫描 (ALS) 的森林生长研究都考虑了在重复的 ALS 数据采集中如何观察到森林属性的变化,但从 ALS 数据预测未来森林生长仍然是一个很少讨论的话题。本研究考察了 10 年内树木年轮宽度周期性年增量 (PAI) 的预测。这种方法的要求是在生长期开始时获取 ALS 数据。然后在给定的生长期后通过钻探对生长进行现场测量。使用基于区域的方法的原理,根据 ALS 指标对 PAI 进行建模。与强度相关的指标作为预测因子特别重要,而有效叶面积指数则不是。预测的均方根误差 (RMSE) 略高于 21%。额外的现场信息(土壤类型、管理操作)将 RMSE 提高了 2.7 个百分点。
之前大多数关于推断过去火灾历史的研究都使用了树木年轮学(即树木年轮测定法)。这类研究大部分在北美进行(Gill 和 McCarthy 1998),但一些研究已将该方法应用于澳大利亚森林(例如 Simkin 和 Baker 2008、Zimmer 等人 2010、Gosper 等人 2013)。但是,该方法需要专业设备和技术,物种具有清晰的年轮,仅限于高烈度火灾,并且无法提供现场结果来指导监测地点的选择。当一种或多种植物物种(至少部分)被火灾杀死并以可估计的速度重新生长时,可以使用另一种推断过去火灾的方法。例如,Clarke 及其同事(2010)成功地开发并测试了基于马里桉树树干直径的火灾后时间估计值。该方法最适合火灾导致林分完全替换的系统,但原则上也可以适用于部分林分替换。例如,即使火灾事件不是林分替换或部分林分替换,不同年龄组的混合林分和林下结构也会有所不同(Lindenmayer 等人,2000 年)。然而,在非林分替换系统中使用该方法将 (i) 涉及大量的森林测量工作,(ii) 受到
我们将第一期中期经营计划定为三年结构改善计划,并采取措施降低盈亏平衡点。通过重组集团公司,我们努力降低固定成本,取得了显著成果,帮助我们大幅降低了与 2019 财年水平相比的盈亏平衡销售额比率,从 2019 财年的 92% 降至 2023 财年的 82.5%。我们现在已经牢固地建立了盈利能力,并实现了连续三年收入和利润增长的年轮管理。与此同时,我们看到了业务方法中需要解决的几个问题。具体来说,我们未能充分利用随着电动汽车 (BEV) 的快速普及和对软件的需求不断增长而出现的行业结构变化所带来的增加产品附加值的机会。我们还需要解决由于劳动力减少和无法留住员工而导致的生产力下降问题,这在一定程度上是由于疫情以来劳动力环境的急剧变化。第二个中期经营计划将灵活应对不断变化的外部环境,修改我们的管理方法,以便继续提高我们产品的附加值。
从气候变化的角度来看,地中海森林生态系统的恢复力与其应对干旱和气温升高的能力密切相关。这种能力可能受到物种或种源之间和种源内的遗传差异的影响。在不断变化的环境中,管理指南应权衡与当地和/或非当地种源相关的风险,以促进对恢复力强的森林遗传资源的有效保护和可持续管理。在本研究中,我们分析了托斯卡纳-艾米利亚亚平宁国家公园天然林和人工林中银冷杉 (Abies alba) 对干旱的生长反应,比较了该物种在意大利三个种源的生长表现:(a) 西阿尔卑斯山 - (b) 北亚平宁山 (当地) - (c) 南亚平宁山。干旱严重程度由标准化降水蒸散指数 (SPEI) 定义。我们通过评估气候-生长关系并应用基于树木年轮宽度的干旱“恢复力指数”(RRR) 进行了树木年轮学分析。人工林的平均生长速度比高度破碎的天然林更快,对严重干旱的恢复力更强,对严重干旱的恢复率也显著更高。冷杉种源的平均生长速度没有差异,而亚平宁南部种源的恢复力 (rec) 和恢复力 (resl) 明显优于西阿尔卑斯山种源,尤其是在中度 (rec + 5 – 15%, resl + 13 – 15%) 和极端 (rec + 20% %, resl + 22%) 干旱年份。当地种源表现出中间行为。与西阿尔卑斯山种源相比,南部和当地种源对干旱的恢复力更强,在气候变化应对战略的背景下,它们是非常重要的森林遗传资源。最后,根据 SPEI6 确定的年份计算的 RRR 指数趋势通常显示种源和再生模式之间的差异大于 SPEI12 确定的年份,这可能是由于生长季节山区反复发生的短期干旱增加所致。这些结果提供了有关气候变化下不同银冷杉种源的干旱反应的重要信息,强调了在森林管理和规划中考虑森林繁殖材料遗传背景的重要性。得益于与国家公园和当地森林管理者的密切合作,这些结果可能会得到具体的应用,例如,通过正确评估国家公园森林中种源辅助迁移的实用性,以及更好地管理剩余的银冷杉天然林。
近年来,木质复合材料凭借其可持续性及固有的层状多孔结构,在电磁干扰(EMI)屏蔽领域受到了广泛关注。木材的通道结构常用于负载高导电材料以提高木质复合材料的EMI屏蔽性能,但如何利用纯木材制备超薄EMI屏蔽材料的研究很少。本文首先通过平行于年轮切割木材得到超薄单板,然后通过简单的两步压制和碳化制备碳化木膜(CWF)。超薄厚度(140 μ m)、高电导率(58 S cm − 1 )的CWF-1200的比EMI屏蔽效能(SSE/t)可达9861.41 dB cm 2 g − 1,远高于已报道的其他木质材料。此外,在CWF表面原位生长沸石咪唑酯骨架-8(ZIF-8)纳米晶体,得到CWF/ZIF-8。CWF/ZIF-8表现出高达46 dB的EMI屏蔽效能(SE),在X波段表现出11 330.04 dB cm 2 g − 1的超高SSE/t值。此外,超薄CWF还表现出优异的焦耳加热效应。因此,超薄木基薄膜的开发为木质生物质取代传统的不可再生且昂贵的电磁(EM)屏蔽材料提供了研究基础。
7.1 新西兰南岛怀塔基山谷地貌要素的照片和形态图 96 7.2 九单元地表模型 97 7.3 1974 年新西兰惠灵顿发生的山体滑坡 101 7.4 新西兰怀帕奥阿河悬浮泥沙浓度与水排放量之间的关系。 B:长期累积悬浮沉积物产量与洪水频率之间的关系 103 8.1 密歇根州欧克莱尔生长度日数中值变化的预测 128 8.2 夏威夷马努阿罗阿天文台空气样本中二氧化碳 (CO 2 ) 浓度月平均值趋势 129 8.3 北半球温度曲线 129 8.4 北半球年平均温度估计值与平均温度的异常值 130 9.1 森林、林地、灌木、草本草原和沙漠群落的概况 138 9.2 不同类型的花粉粒显示出孔隙和开口的典型形状和排列 140 9.3 具有早材和晚材年轮的树木横截面 140 9.4 可用于从湖泊和泥炭中获取样本的沉积物取芯装置(俄罗斯取芯器) 142 9.5 树芯取样器和树轮芯 143 9.6 安大略省 Decoy 湖的花粉图(根据 Szeicz 和 MacDonald,1991 年) 144 9.7 线样带、带样带和样方或地块的示例 148 9.8 1997 年冬季在 S 收集的大球果花旗松(Pseudotsuga menziesii)的树轮芯
几乎无论我走到哪里,都能看到人工智能 (AI) 的变革潜力被大力推广,因此,它成为本期《研究视野》的焦点可谓恰逢其时。本文介绍的一些研究人员是全球人工智能专家之一,他们签署了一封公开信,肯定了这项技术的好处,并敦促谨慎发展。他们说的实际上是:“人工智能系统必须做我们希望它们做的事情。”在实现巨大希望的同时推动进步是一种复杂的平衡。它需要工程师、计算机科学家和数学家构建从数据中学习的系统,既像人类一样思考,又不像人类思考;它需要气候科学和犯罪学等不同领域的专家开发这些学习机器的创新用途;它需要研究人员在算法丰富的世界中提出有关安全、信任、透明度、保障和隐私的新问题。剑桥在机器学习、机器人技术和人工智能技术应用方面具有优势。研究不仅旨在最大限度地发挥人工智能的影响,还旨在了解如何确保该技术造福人类。这得益于两个新的研究机构——利华休姆未来智能中心和生存风险研究中心——以及阿兰图灵研究所的创始合伙人。这些发展确实来得正是时候。2017 年 11 月,英国政府的工业战略提出了四大挑战,其中之一就是让英国走在人工智能和数据革命的前沿。在本期中,我们将介绍剑桥人工智能研究人员正在产生重大影响的一些领域,并考虑加入“剑桥集群”对学术界和工业界的一些好处。在这期《研究视野》的不同版本中,我们介绍了囊性纤维化研究的重大推动、史诗的史诗分析以及剑桥第一个专门的树木年轮实验室。我们希望您喜欢这些文章以及本期的其他文章。克里斯·阿贝尔教授研究副校长