卫生研究所卡洛斯三世(IDIBAPS),巴塞罗那,巴塞罗那,巴塞罗那,巴塞罗那,巴塞罗那,巴塞罗那。西班牙,卫生研究院卡洛斯三世,巴塞罗那,西班牙,西班牙,西班牙,维克,西班牙,8年卫生保健南拉瓦尔中心。
最近的研究表明,怀孕和父母身份的转变对人类大脑结构特征有显著影响。在这里,我们介绍了一项全面的研究,研究了父母身份和出生/父亲的孩子数量与 36,323 名英国生物库参与者(年龄范围为 44.57 – 82.06 岁;52% 为女性)的大脑和细胞衰老标志之间的关联。为了评估父母身份对大脑的整体影响,我们在 T1 加权磁共振图像上训练了一个 3D 卷积神经网络,并在保留的测试集中估计了大脑年龄。为了研究区域特异性,我们使用 FreeSurfer 提取了皮质和皮质下体积,并运行了层次聚类以根据协方差对区域体积进行分组。来自 DNA 的白细胞端粒长度 (LTL) 被用作细胞衰老的标志。我们采用线性回归模型来评估孩子数量、大脑年龄、区域大脑体积和 LTL 之间的关系,并包括交互项以探究关联中的性别差异。最后,我们将大脑测量值和 LTL 作为二元分类模型中的特征,以确定大脑和细胞老化的标志是否可以预测父母身份。结果显示,无论男女,出生/父亲的孩子数量越多与大脑年龄越小之间存在关联,女性的影响更大。基于体积的分析显示,纹状体和边缘区域存在母体效应,而父亲则没有。我们没有发现孩子数量与 LTL 之间存在关联的证据。父母身份分类显示大脑年龄模型的 ROC 曲线下面积 (AUC) 为 0.57,而使用区域大脑体积和 LTL 作为预测因子的模型显示 AUC 为 0.52。我们的研究结果与之前针对中老年父母的基于人群的研究一致,揭示了父母经验与基于神经影像的大脑健康替代指标之间存在微妙但重要的关联。该研究结果进一步证实了对父母在怀孕和产后进行的纵向队列研究的结果,可能表明父母身份的转变与大脑健康的长期影响有关。
生理学中的骨稳态取决于骨形成和吸收之间的平衡,在病理学中,这种体内平衡易受不同影响的破坏,尤其是在衰老状态下。肠道菌群已被认为是调节宿主健康的关键因素。许多研究表明,肠道菌群与骨骼代谢之间通过宿主微生物群串扰存在显着关联,而肠道微生物群甚至是骨代谢相关疾病的发病机理的重要因素。本评论探讨了肠道菌群与骨代谢之间的相互作用,重点是肠道微生物群在骨老化和与衰老相关的骨骼疾病中的作用,包括骨质疏松症,脆性骨折修复,骨关节炎以及脊柱变性。总结了内分泌系统,免疫系统和肠道微生物群代谢产物在衰老过程中对骨代谢的影响,从而促进了更好地掌握与衰老相关的骨骼代谢疾病的发病机理。本评论提供了针对肠道菌群的创新见解,以将与骨老化有关的疾病作为一种临床治疗策略。
Senate Bill (SB) 184 (Chapter 47, Statutes of 2022) amended Welfare and Institutions Code section 14007.8 to expand eligibility for full scope Medi-Cal to individuals who are 26 through 49 years of age and who do not have satisfactory immigration status (SIS) as required by Welfare and Institutions Code section 14011.2, if otherwise eligible.这种新的覆盖范围称为26-49岁的成人扩张。SB 184 provides that the Age 26-49 Adult Expansion will not take effect until the Department of Health Care Services (DHCS) confirms that both the State and counties' automated systems are programmed as needed to enroll the new population into coverage.DHCS正在计划系统的准备和有效性26-49岁的成人扩张,不迟于2024年1月1日。
摘要:在计算机视觉的领域,使用OpenCV的年龄和性别检测是一种关键应用,展示了复杂算法和真实世界应用的融合。该项目努力开发一个能够准确估算图像或视频流的年龄和性别的强大系统。利用OpenCV的力量,一个流行的开放式计算机视觉库,再加上机器学习技术,该系统旨在自动将个人分类为预定义的年龄组和性别类别。通过面部特征分析,深度学习模型和图像处理技术的结合,系统可以以惊人的精度辨别年龄和性别属性。通过将该技术集成到各种领域,例如监视,营销和用户体验自定义,该项目努力为各种社会和商业挑战提供实用的解决方案。年龄和性别的抽象性质使这项努力多基础,需要一种细微的方法,包括数据预处理,模型培训和绩效优化。最终,该项目有助于进步计算机视觉应用程序,从而促进了许多领域的创新和效率。关键字:CNN,深度学习,性别分类,年龄检测。I.在当今相互联系的世界中引言,在那里,数字互动和社交媒体渗透到日常生活中,了解人口统计学(例如性别和年龄)变得越来越重要。II。II。智能设备的扩散促进了大量数据的收集,其中大部分包含对人类行为和互动的宝贵见解。在利用这些数据,性别和年龄预测算法的无数应用程序中,它们在增强用户体验,个性化内容并告知决策的潜力中脱颖而出 - 在各个领域制定过程。由于其丰富的信息内容,面部照片已成为性别检测和年龄预测算法的主要来源。利用图像处理,特征提取和分类技术方面的进步,研究人员和开发人员设计了复杂的方法来分析面部特征并准确推断人口统计学属性。这些方法通常涉及阶段,例如增强图像,以提高质量和分割以隔离相关特征,从而为后续分析奠定了基础。通过训练大型数据集的神经网络,我们旨在开发能够准确地将性别预测为“男性”或“女性”的强大模型,并可能基于实验参数对年龄组进行分类。除了技术复杂性之外,人类面部图像对各个行业和社会领域都具有深远的影响。从安全和娱乐到招聘和身份验证,从面部图像中检测性别和年龄的能力可以简化流程,增强安全措施并为战略决策提供了信息。相关作品本文使用应用于面部图像的深度学习技术介绍了有关性别识别的研究。此外,面部表情,人类交流的重要方面,提供了对情感状态和反应的见解,使面部图像分析成为心理学家和研究人员的宝贵工具。通过阐明这些技术的方法,挑战和潜在应用,我们旨在为计算机视觉中的知识不断增长,并促进具有真实世界影响的实用解决方案的发展。作者探索了卷积神经网络(CNN)的使用进行特征提取和分类,从而实现了有希望的
年轻时被诊断出患有2型糖尿病(T2D)的人正在增加,并且患心血管疾病的风险升高(CVD)(1)。先前的研究表明,诊断时糖尿病亚组除以年龄的差异表现出遗传危险因素的差异(2),并且患有早发T2D的糖尿病差异具有较高的T2D多基因风险评分(PRS)(3)。然而,与T2D诊断时与年龄相关的遗传异质性是否会影响过多的CVD风险仍然很大未知。与常见的土壤假设一致(4),我们假设在早发糖尿病患者中对CVD的遗传易感性增加。我们分析了来自两个前瞻性共同体的数据,以调查对较早的T2D诊断对事件CVD的遗传影响增加。此外,由于建议一种健康的生活方式来抵消CVD的遗传风险增加(5,6),因此我们探索了通过T2D诊断时的年龄通过健康的生活方式层次来修改对CVD的遗传影响。
为口腔 - 芯片模型创建基本结构涉及设计一个微流体芯片,该微流体芯片复制必需的组件并创建模拟口腔复杂性的微环境。微流体芯片可以由各种材料制成,包括玻璃,硅和聚合物。微流体芯片的标准制造技术包括软光刻,光刻图和注射成型。这些方法可以在芯片上创建复杂的微观结构和通道。微流体芯片应复制口腔的关键成分,包括代表各种口腔组织的细胞培养室,例如上皮细胞,成纤维细胞和唾液腺细胞,这些细胞包含在细胞外基质中。细胞外基质可以结合水凝胶或其他材料,以提供结构支撑和细胞附着和生长的基板。结合灌注系统可模拟血液,使营养素,氧气和药物的递送2,3。
衰老与各种器官和组织的功能下降有关,并且对各种日常应力的反应不足会导致与年龄相关的疾病。因此,在老龄化的社会中,衰老是各种疾病和重要研究主题的危险因素。据报道,患有细胞衰老的细胞(衰老细胞)积聚在体内各种组织中,并可能导致生理衰老。此外,已经表明,在转基因小鼠中选择性消除表达P16的细胞可降低与衰老相关的疾病并延长寿命。鉴于这些实验结果,靶向体内的衰老细胞是预防和治疗与年龄相关的疾病的有吸引力的策略。在这篇综述中,我们将总结当前对细胞衰老基本特征及其与年龄相关疾病的关系的知识。我们还将总结新兴的治疗策略,包括消除衰老细胞的药物(消除衰老细胞)和鼻型药物(调节衰老细胞的药物),并引入了最新发现和临床翻译。
在现代植物育种中,基因组选择已成为选择仅部分表型的大型繁殖种群中的优质基因型的黄金标准。许多育种计划通常依赖于单核苷酸多态性(SNP)标记来捕获全基因组的选择候选数据。为此,具有中等至高标记密度的SNP阵列代表了一种强大且具有成本效益的工具,可从大规模繁殖群体中生成可重现,易于处理的高通量基因型数据。但是,SNP阵列容易出现导致等位基因呼叫失败的技术错误。为了克服这个问题,基于失败的SNP调用纯粹是技术性的,通常会估算失败的呼叫。但是,这忽略了失败调用的生物学原因,例如:缺失 - 越来越多的证据表明基因存在 - 缺失和其他类型的基因组结构变体可以在表型表达中发挥作用。由于缺失通常不与其弯曲的SNP不平衡,因此缺少SNP调用的排列可能会掩盖有价值的标记 - 性状关联。在这项研究中,我们使用四个参数和两个机器学习模型分析了为低油菜籽和玉米分析的数据集,并证明基因组预测中的等位基因调用失败对重要的农艺性状具有很高的预测。我们根据种群结构和连锁不平衡提出了两个统计管道,这使可能由生物学原因引起的失败SNP调用过滤。对于所检查的人群和特征,基于这些过滤的失败等位基因调用的预测准确性与基于标准SNP的预测具有竞争力,这是基因组预测方法中缺失数据的潜在价值的基础。SNP与所有失败的等位基因调用或过滤等位基因调用的组合并不能以基于基因组关系估计的冗余性而获得的基于SNP的预测的预测均超过预测。
