§ 电力转换系统 (PCS),有时也称为电力电子,是实现能源存储的关键技术。§ 在并网能源存储系统中,PCS 控制向电网供应和从电网吸收的电力,同时优化能源存储设备性能并维持电网稳定性。§ 能源存储技术有多种类型,每种技术都有自己的特点和控制参数,必须由 PCS 进行管理。§ 能源存储装置可能承担各种不同的电网支持服务的任务;PCS 负责控制能量流以满足预期电网支持应用的要求。§ PCS 的主要电气元件是半导体开关、磁性设备(如电感器和变压器)、电容器和控制器。
本研究提出了通过整合混合储能源来提高并网光伏系统效率的建议。它们用于改善光伏系统输出功率的质量。输出功率的变化在很大程度上取决于天气条件,从而对与之相连的电力系统的稳定性产生不利影响。该模型是在 Matlab/Simulink 环境中利用数学模型构建的。仿真结果表明,这种混合模型有助于光伏系统成为可调度电源,由于使用了基于电池-超级电容器的系统,它可以快速满足电网的电力需求。此外,当仅使用超级电容器时,系统可以在光伏系统输出功率的平滑模式下运行。该混合系统的控制方案已成功演示,以保证与可再生能源集成的电力系统的质量和稳定性。这种模型对于光伏系统至关重要,尤其是当它们连接到较差的电网时。
摘要。科学技术的日益快速发展导致了工业领域新技术的出现。可再生能源的开发是为了满足印度尼西亚日益增长的能源需求,特别是在可再生能源领域。可再生能源通过太阳能电池板来满足这些需求,太阳能电池板既可用于离网,也可用于并网。然而,使用太阳能电池板的可再生能源不仅对环境有益,而且还会加剧化石燃料危机。因此,需要进行这项研究来开发一个需要太阳能电池板并连接到 PLN 网络的并网 PLTS 系统。本文旨在规划太阳能发电厂的安装。它包括确定太阳能发电厂的位置点、KHW 仪表和共享面板的位置点、屋顶场地条件、屋顶面积测量、系统平衡 (BOS) 测量以及节能规划和计算。所有过程均在 Satker Polda Jatim 中实现。估计的节省结果可以称为 Rp。当该地方安装太阳能电池板时,每月费用为 50,710,597。
摘要 :以经济可行且环境友好的方式满足机构和组织的能源需求的挑战正变得越来越复杂,尤其是在尼日利亚这样的发展中国家。这项工作提出了一种有弹性的混合可再生能源系统,以供应尼日利亚阿布贾大学主校区的电力需求,估计为 900 kW,消耗率为 6300 kWh/天。HOMER 软件被用作建模工具,进行模拟、优化和敏感性分析,以探索利用阿布贾(MSW)与乌耶河的微型水力发电潜力和太阳能光伏资源混合以满足校园负荷需求的可行性。混合工厂具有以下组件规格:水力资源标称流量为 14.5 m3/s;最大水头为 10 m,潜在容量为 885 kW;MSW 工厂的规格确定为 500 kW 容量,废物处理量为 2.3 吨/天;太阳能光伏组件容量为 500 kW,城市固体废物的低热值为 15.84 MJ/kg。2 MW 混合电厂的总安装成本确定为 54.4 亿奈拉(722.5 万美元),年发电量计算为 799,000 kWh/年。模拟系统的净现值成本为 93.7 亿奈拉(12,486,120 美元),相应的 LCOE 为 55.2 奈拉/kWh(0.0736 美元/kWh)。碳排放量估计为每天 7.33 克,接近净零排放,表明所利用的可再生能源对环境友好。使用项目寿命、通货膨胀率、太阳辐照度、MSW 的低位热值 (LHV)、容量短缺和乌耶河的年平均体积流量对系统进行的敏感性分析表明,净现值成本随着工厂寿命的增加而增加,而能源的平准化成本随着寿命的增加而降低,从工厂寿命 25 年时的 ₦55.02/kWh 降低到 30 年时的 ₦43.73/kWh。
科学技术大学 (PUST),孟加拉国 Pabna-6600 摘要 本研究考察了孟加拉国帕布纳科技大学 (PUST) 使用 HOMER Pro 软件优化的太阳能-沼气发电系统集成的可行性和影响。主要目标是降低大学的能源成本和碳排放。拟议的系统将太阳能和沼气与现有电网相结合,使用净计量来提高效率和可持续性。财务分析显示,总净现值 (NPC) 为 231,587,200.00 孟加拉塔卡,平准化能源成本 (COE) 具有竞争力,为每千瓦时 1.49 孟加拉塔卡。内部收益率 (IRR) 为 18.4%,回收期为 4.89 年,强调了该系统的经济可行性。在环境方面,它显着减少每年的二氧化碳排放量,从 1,960,780 公斤减少到 840,268 公斤,符合大学的可持续发展目标。本研究重点介绍了孟加拉国学术机构整合可再生能源的潜力,为类似举措提供了宝贵的见解。关键词:并网太阳能-沼气发电系统、净计量、平准化能源成本 (COE)、碳减排和可持续发展举措术语:1 美元 = 109.82 孟加拉塔卡 (BDT) 或 ৳ BioGen = 沼气发电机 COE = 能源成本 ICE = 内燃机 IRR = 内部收益率 LCOE = 平准化能源成本 NPC = 净现值成本 PUST = 帕布纳科技大学
14:30 - 15:10 Nasser Faarouqui 制定 100% 可再生能源系统的电网规范、治理和标准:澳大利亚和新西兰的观点
亚行东亚工作论文系列是一个论坛,旨在激发讨论并征求反馈意见,讨论亚洲开发银行 (ADB) 东亚局工作人员、顾问或资源人员正在进行和最近完成的研究和政策研究。该系列涉及关键的经济和发展问题,以及与项目/计划经济分析、统计数据和测量有关的概念、分析或方法问题。该系列旨在增强对亚洲发展和政策挑战的了解;加强亚行国家伙伴关系战略及其次区域和国家业务的分析严谨性和质量;提高用于监测发展成效的统计数据和发展指标的质量和可用性。
摘要 — 在主动配电网中,可再生能源 (RES) 例如光伏 (PV) 和储能系统(例如超导磁能储能 (SMES))可以与消费者结合组成微电网 (MG)。光伏的高渗透率导致联络线潮流波动剧烈,并严重影响电力系统运行。这可能导致电压波动和功率损耗过大等若干技术问题。本文提出了一种基于模糊逻辑控制的 SMES 方法 (FSM) 和一种基于优化模糊逻辑控制的 SMES 方法 (OFSM),用于最小化联络线潮流。因此,波动和传输功率损耗降低了。在 FSM 中,SMES 与鲁棒模糊逻辑控制器 (FLC) 一起使用以控制联络线潮流。在 OFSM 中采用优化模型来同时优化 FLC 的输入参数和 SMES 的电压源换流器 (VSC) 的无功功率。将最小化联络线潮流作为优化模型的目标函数,利用粒子群优化 (PSO) 算法解决优化问题,同时考虑公用电网、VSC 和 SMES 的约束。仿真结果证明了所提方法的有效性和鲁棒性。
并网电池储能系统 (BESS) 是现代电网中的关键组件,可实现电力供应和需求的有效管理。BESS 由一组连接到电网的电池组成,可在需要时存储和释放电力。本文讨论了与间歇性可再生能源相关的挑战,并提高了电网的稳定性和可靠性。这项工作的主要目标是在需求低迷期间储存剩余电力,并在需求高峰期或可再生能源发电量较低时将其供应给电网。通过储存剩余能源,BESS 有助于平衡供需波动,减少对昂贵的化石燃料发电厂的需求,并最大限度地减少温室气体排放。此外,BESS 还提供频率调节、电压支持和电网稳定。此外,BESS 降低了太阳能和风能等可再生能源的间歇性,使其能够融入电网。它允许在可再生能源不积极发电时储存和利用捕获的能量。并网 BESS 是向更可持续和更具弹性的能源未来过渡的重要组成部分。它们有助于有效利用可再生能源,提高电网灵活性,并有助于减少碳排放,最终促进更清洁、更可靠的电力供应。使用 MATLAB/Simulink 环境对带有 BESS 的并网太阳能系统进行仿真。
摘要。作为可再生能源之一,阳光或太阳能被认为是可利用的替代电能来源之一。在本研究中,使用光伏进行了并网系统仿真模型。目标是找出使用控制逻辑算法获得的能量的特性。在这个仿真模型设计中,先前进行了计算以确定光伏容量,因为它将根据住宅使用的电力容量进行调整。在本次讨论中,它符合住宅用电需求 1,500 瓦或每小时能源消耗 1.5 千瓦时。该电负荷将在 07.00 至 17.00 开启,这意味着该电负荷将消耗电力 10 小时。那么每天消耗的总能量为 1.5 千瓦时。在这个模拟中,使用了 2 个 100 Wp(峰值瓦特)太阳能电池板,输出电压为 12 V DC。一天大概能产生200Wp x 10小时加热=2000Wh的电量。