• 确定预期电力需求(负载)(单位为 kW(和 kVA))和最终用户的能源需求(单位为 kWh/天); • 确定为电池系统充电和/或满足最终用户所需的白天负载所需的光伏阵列大小(单位为 kW p); • 确定适合光伏阵列的光伏电网连接逆变器大小(单位为 VA 或 kVA); • 选择最合适的光伏阵列安装系统; • 确定电池系统的适当直流电压; • 确定电池系统的容量(单位为 Ah 和 V 或 Wh)和输出功率/电流(单位为 W 或 A),以满足最终用户的能量和最大需求要求; • 确定电池逆变器的大小(单位为 VA(或 kVA)),以满足最终用户的要求; • 确保太阳能电池阵列大小、电池系统容量和连接到电池系统的任何逆变器都匹配良好; • 满足系统功能。
1. 新标准 AS/NZS5139 引入了电池系统和电池储能系统 (BESS) 这两个术语。传统上,电池这个术语用于描述产生直流电/能量的储能设备。然而,近年来,市场上的一些储能设备包括储能设备运行所需的其他集成组件。电池系统这个术语取代了电池这个术语,以说明电池系统可以包括储能和其他相关组件。例如,一些锂离子电池配有集成电池管理系统,而液流电池配有泵送系统。电池储能系统 (BESS) 这个术语包括电池系统、电池逆变器和相关设备,如保护装置和开关设备。然而,本指南中讨论的主要两种电池系统是铅酸电池和锂离子电池,因此用这些术语来描述。由于本指南中使用的两种主要电池系统是铅酸电池和锂离子电池,因此本指南中连接到电池系统的逆变器简称为电池逆变器。
摘要:由于这些资源具有固有的优势,将光伏 (PV) 太阳能电池板和风力涡轮机 (WT) 等可再生能源整合到智能电网中是非常有益的。太阳能和风能不仅环保且可持续,而且广泛可用且具有成本效益。通过利用包括先进通信、控制和自动化技术在内的智能电网功能,可以显著提高可再生能源系统的效率和可靠性。这种整合支持向更清洁的能源格局过渡,减少对化石燃料的依赖,并通过降低温室气体排放帮助减轻气候变化的影响。混合系统方法结合了太阳能和风能,进一步提高了能源稳定性和可用性,弥补了这些可再生能源的间歇性。这项比较研究旨在评估这些 MPPT 方法在优化混合可再生能源系统功率输出方面的效率和有效性。粒子群优化 (PSO) 以其稳健性和快速收敛而闻名,在跟踪不同环境条件下的最大功率点方面可能提供卓越的性能。另一方面,P&O 方法更简单且应用更广泛,但在快速变化的条件下可能表现不佳。通过在 MATLAB/SIMULINK 中实现和模拟这些技术,本研究提供了对其实际应用和性能指标的见解,指导更高效的可再生能源系统的开发。关键词 - 混合系统、光伏系统、风力发电系统
关于 NIT Warangal:瓦朗加尔国家技术学院 (NITW) 前身为 RECW,是 1959 年成立的十七所 REC 中的第一所。多年来,学院已经成为一所提供高标准技术教育的领先机构,提供科学和工程各个专业的 B.Tech、M.Tech 和 Ph.D. 课程。学院下设 14 个院系,提供 8 个本科生课程和 31 个研究生课程,还有博士课程。学院为全住宅校园,占地 250 多英亩,基础设施优良。瓦朗加尔国家技术学院校园距离 Kazipet 火车站 2 公里,距离 Warangal 火车站 12 公里。关于 Warangal:瓦朗加尔以其丰富的历史和文化遗产而闻名。它距离州首府海得拉巴(最近的机场)140 公里。瓦朗加尔的铁路和公路交通十分便利。这里是前卡卡蒂亚第五王朝的首都。这里是一处旅游景点,拥有许多历史古迹,如千柱寺、瓦朗加尔堡、巴德拉卡利寺、拉玛帕寺和拉克纳瓦拉姆湖。电气工程系
摘要—本报告介绍了一种用于电网连接的光伏 (PV) 系统与混合能源存储的电源管理方案,重点是最大限度地利用太阳能并确保电网稳定性。该方案结合了动态能源管理和电力流控制策略,可根据太阳能发电和电网需求调整电池充电/放电率。在 MATLAB/Simulink 中开发的仿真模型评估了各种参数和性能指标。结果表明,太阳能和电池的使用得到了优化,电网依赖性降低,电网稳定性增强,有望节省成本并提高弹性。总体而言,该方案可有效整合可再生能源,确保可靠的电力供应,同时最大限度地减少环境影响和运营成本。
................................................................................................................................................ 12
摘要 — 3 型和 4 型风力发电机的电网形成 (GFM) 控制在电力系统研究中引起了广泛关注;然而,电力电子转换器有限的过流能力继续削弱不断发展的电力系统的电网强度。同步风力发电,也称为 5 型风力发电机 (WTG),通过在可再生能源发电渗透水平非常高的情况下保持电网基本同步,提供了独特的 GFM 解决方案来解决电网整合和电网强度问题。5 型 WTG 通过由变速液力变矩器驱动的同步发电机 (SG) 连接到电网;因此,风力转子以变速模式运行以实现最大发电量,并且发电机轴与电网保持同步。本文在功率硬件在环 (PHIL) 测试环境下开发并测试了 5 型 WTG 的高保真模型。 PHIL 演示表明,5 型风力发电机组本质上可充当 GFM 装置,并且在高风速条件下,与 3 型风力发电机组相比,其功率响应、风轮动力学和效率方面可获得类似的性能。开发的模型还进一步深入了解了 5 型风力发电机组如何有利于平稳过渡到具有高集成度逆变器资源的电力系统。索引术语 — 同步风、电网形成控制、电网强度、5 型、功率硬件在环。
份额 )'/) 可靠 45.1 石油基 2,807 1,999 13.8 11.2 柴油燃料 1,206 1,002 5.9 5.6 石油热能 650 305 3.2 1.7 燃气轮机 767 540 3.8 3.0 柴油燃料(混合动力) 16 11 0.1 0.1 动力驳船 19 10 0.1 0.1 燃油燃料 135 117 0.7 0.7 燃油柴油燃料 15 13 0.1 0.1 天然气 3,731 3,281 18.3 18.3 可再生能源 5,063 4,541 24.8 25.4 生物质 175 145 0.9 0.8 生物质 167 142 0.8 0.8 垃圾发电(WTE) 8 3 0.0 0.0 地热 865 714 4.2 4.0 太阳能 1,092 879 5.4 4.9 电表后(BTM) 46 37 0.2 0.2 地面安装 1,036 833 5.1 4.7 屋顶安装太阳能光伏(混合) 0 0 0.0 0.0 地面安装太阳能光伏(混合) 10 9 0.0 0.0 水电 2,578 2,450 1Z6 13.7 蓄水式水电 1,418 1,366 6.9 7.6 抽水蓄能 736 720 3.6 4.0 径流式风电 424 365 2.1 2.0 风电 353 353 1.7 20 陆上风电 353 353 1.7 2.0 海上 I4ind 05 储能系统 (ESS) 总计
能源有两种类型:可再生能源和不可再生能源。不可再生能源包括煤炭、天然气和石油。不可再生能源依靠燃烧化石燃料来产生能量。这些能源的特点是易于使用,随处可见。但这些能源存在耗时长、燃烧时产生大量二氧化碳以及对员工健康存在一定风险的问题。可再生能源通常被称为清洁能源,来自不断补充的自然资源或过程。可再生能源的一些例子包括太阳能、1-3 风能、4-6 水力发电、7 地热能、8 生物质能、9 和燃料电池。10-12 这些可再生能源具有以下优势:可持续性、低维护要求、众多健康和环境效益。相比之下,这些能源的前期成本较高、间歇性、存储能力和地理限制。13-15
计划安装数量 可靠安装 可靠安装 可靠安装 可靠安装 可靠煤炭 8,942 8,193 44.3 46.2 并网 19,284 17,113 95.5 96.5 石油基 2,354 1,648 11.7 9.3 嵌入式 913 623 4.5 3.5 柴油 937 803 4.6 4.5 总计 20,196 17,736 100.0 100.0 石油热能 650 305 3.2 1.7 能源存储系统 (ESS) 363 341 燃气轮机 767 540 3.8 3.0 电池 ESS 363 341 天然气 3,731 3,281 18.5 18.5 混合 ESS 0 0 可再生能源 5,169 4,614 25.6 26.0 生物质 175 145 0.9 0.8 生物质 167 142 0.8 0.8 垃圾发电 (WTE) 8 3 0.0 0.0 地热 865 714 4.3 4.0 太阳能 1,244 995 6.2 5.6 电表后 (BTM) 46 37 0.2 0.2 地面安装 1,198 958 5.9 5.4 水力发电 2,549 2,423 12.6 13.7 蓄水式水力发电 1,418 1,366 7.0 7.7 抽水蓄能 736 720 3.6 4.1径流式风电 (ROR) 395 338 2.0 1.9 风能 337 337 1.7 1.9 陆上风能 337 337 1.7 1.9 海上风能 (OSW) 0 0 0.0 0.0 #REF! 总计 20,196 17,736 100.0 100.0 能源存储系统 (ESS) 363 341 电池 ESS 363 341 混合 ESS 0 0