摘要 — 节能是多核嵌入式系统上计算密集型实时应用的关键要求。多核处理器支持任务内并行,在本文中,我们研究了有约束截止期限的零星并行任务的节能实时调度,其中每个任务都表示为有向无环图 (DAG)。我们考虑一个集群多核平台,其中同一集群内的处理器在任何给定时间都以相同的速度运行。提出了一个名为速度配置文件的新概念来模拟运行时每个任务和每个集群的能耗变化,以最大限度地降低预期的长期能耗。据我们所知,目前还没有研究考虑过有约束截止期限的 DAG 任务的节能实时调度,也没有在集群多核平台上进行。所提出的节能实时调度器在 ODROID XU-3 板上实现,以评估和证明其可行性和实用性。为了补充我们的大规模系统实验,我们还进行了模拟,结果表明,与现有方法相比,我们提出的方法可节省高达 67% 的 CPU 能耗。
培训大纲 1.作为任务观察员学员,了解如何设置和使用机载无线电至关重要。这使观察员能够在工作量大时协助飞行员,并与任务基地和地面单位进行有效沟通。机载无线电是航空的主要通信方式。为了有效使用无线电,任务飞行员和观察员不仅必须了解如何通信,还必须了解在 CAP 任务期间何时需要通信。观察员可以操作机载通信无线电以减轻飞行员的工作量,并使用 FM 无线电与地面单位通信。一些航空频率专为空对空通信而设计,可以由 CAP 飞机(或任何其他通用航空飞机)使用。123.1 MHz 是官方 SAR 频率。122.75 和 122.85 MHz 是空对空通信频率(供私人机场使用,不向公众开放)。122.90 MHz 是 Multicom 频率;它可用于搜索和救援,但也用于其他临时、季节性或紧急活动(但请注意,它也被没有塔台、FSS 或 UNICOM 的机场使用)。遵循您的通信计划(如果适用),不要滥用这些频率。查看分段以查看附近机场是否使用 122.90 MHz,并在发送前务必收听。2.航空通信无线电。要建立无线电通信(显示 KX 155),首先将通信无线电调到许可或地面站使用的频率。几乎所有通用航空飞机的发射器和接收器都在 118.0 MHz 至 136.975 MHz 的甚高频频率范围内工作。民航巡逻飞机通常有 720 个频道的无线电,通过旋转频率选择旋钮来选择所需的频率,直到该频率出现在发光二极管显示屏、液晶显示屏或其他数字频率读数或窗口中。
摘要 — 随着逆变器资源 (IBR) 集成度的提高,确保大容量电力系统的可靠运行需要使用电磁暂态 (EMT) 仿真工具来识别和减轻全系统稳定性风险。然而,对大规模、富含 IBR 的电网进行 EMT 研究具有挑战性,因为底层高保真模型和所需的小时间步骤造成了固有的计算瓶颈。本文介绍了 ParaEMT:一个开源的通用 EMT 仿真框架,旨在通过利用先进的并行计算技术(如高性能计算机)来加速仿真。本文全面阐述了 ParaEMT,涵盖了其建模库、仿真策略、框架结构、操作程序和辅助功能,以及其可扩展的并行计算架构。值得注意的是,ParaEMT 是一个用 Python 编写的可公开访问的模块化框架,从而促进了未来的开发和新模型和算法的集成。通过多个案例研究的严格验证证明了 ParaEMT 的准确性和效率。
本硕士论文由 UNF Digital Commons 的学生奖学金免费提供给您,供您免费访问。它已被 UNF Digital Commons 的授权管理员接受并纳入 UNF 研究生论文和学位论文。有关更多信息,请联系 Digital Projects。© 1990 保留所有权利
与并行性。目前相关文献缺乏对并行闭环系统的研究。由于系统动力学是一种能够揭示复杂系统动态过程的方法。因此,本文提出了一种基于系统动力学的并行闭环作业建模方法。为了分析舰载机并行闭环系统,建立了舰载机保障过程模型。给出了保障过程流程图和系统结构方程,分析了动态过程和静态性能。仿真基于尼米兹号航空母舰的实际数据。模拟分析了加油作业、武器装载作业、其他作业和打击任务对保障能力的影响。通过仿真分析,找到了影响保障能力的瓶颈因素。提出了一种新的舰载机保障过程评估方法。为提高舰载机保障能力和航母作战能力提供了参考。
脉冲神经网络 (SNN) 是神经形态计算的一个分支,目前在神经科学应用中用于理解和建模生物大脑。SNN 还可能用于许多其他应用领域,例如分类、模式识别和自主控制。这项工作提出了一个高度可扩展的硬件平台 POETS,并使用它在大量并行和可重构的 FPGA 处理器上实现 SNN。当前系统由 48 个 FPGA 组成,提供 3072 个处理核心和 49152 个线程。我们使用该硬件实现了多达四百万个神经元和一千个突触。与其他类似平台的比较表明,当前的 POETS 系统比 Brian 模拟器快二十倍,比 SpiNNaker 快至少两倍。
永久化是目标,需要很多因素的共同作用才能实现。儿童需要联系、归属感和安全的关系。与扮演父母角色的成年人建立信任关系可以为儿童的成长提供至关重要的情感安全。合法的父母子女关系为所有被收养的儿童提供了最高级别的安全保障。合法的永久化可以通过团聚、变更法定监护权、收养或法定监护来实现。
6 Iterative Algorithms for Linearly Constrained Optimization Problems 127 6.1 The Problem, Solution Concepts, and the Special Environment 128 6.1.1 ~ The problem 128 6.1.2 Approaches and solution concepts 128 6.1.3 The special computational environment 131 6.2 Row-Action Methods , 131 6.3 Bregman's Algorithm for Inequality Constrained Problems 133 6.4 Algorithm for Interval-Constrained Problems 142 6.5标准最小化的行算法147 6.5.1 kaczmarz的算法147 6.5.2 Hildreth的算法148 6.5.3 ART4 -NORM Minimigation
本书中的材料基于在第三届算法和平行VLSI架构的国家间研讨会上提出的作者贡献,该研讨会在卢文(Leuven)举行,Au-Gust 29-31,1994。该研讨会部分由Eurasip和Belgian NFWO(国家科学研究基金)赞助,并与IEEE BENELUX信号处理章节,IEEE BENELUX CIRCETITS和SYSSPEL CAPLER和法国INRIA,法国的IEEE BENELUX信号处理章节合作。这是1990年6月在法国的Pont - & - Mousson举行的两个同名讲习班[1]和法国Bonas,1991年6月[2]。所有这些研讨会都是在EC基础研究行动Nana和Nana2的框架内组织的,这是新的Real.Time Architectures的新型并行算法,由欧洲委员会的ESPRIT计划赞助。NANA承包商是IMEC,Leuven,Belgium(F. Catthoor),K.U。卢文,鲁汶,比利文(J. Vandewalle),恩斯尔,里昂,法国(Y。Robert),tu代代尔特,代尔夫特,代尔夫特,荷兰(P。Dewilde和E. Deprete),Irisa,Irisa,Rennes,Rennes,Rennes,Francance(P. Quinton)。这些项目中的目标是贡献适用于平行体系结构实现的算法,另一方面,设计方法和综合技术,这些方法和综合技术解决了从真实行为到系统的平行体系结构的设计轨迹。因此,这显然与研讨会和书籍的范围重叠。
𝑓𝑓!𝑥,,…,𝑥!≔∏ -𝑓𝑥-是𝜀!- 预测𝐷𝐷![levin'87]等效于平行重复,直至一定损失:•XOR引理⇒平行重复 - 直觉上容易[Viola,widgerson'08]•XOR引理⇐平行重复 - Goldreich -Levin