相比之下,大规模并行工程描述了我们看到的大型项目(数百人)面临的挑战,其中开发工作被分解为许多较小的项目,每个项目可能由一个小团队执行。汽车、飞机或计算机的设计可能需要数千名工程师在数年内做出数百万个设计决策。这些任务都不是孤立执行的 [5]。每个设计选择都可能影响许多其他设计参数。促进设计团队之间的信息传递是产品设计经理的一项基本组织任务 [2, 7, 19, 35]。他们的主要开发挑战是将许多子问题解决方案集成到一个精心设计的系统中。一些公司通过指派系统工程师或冲突解决工程师来处理子系统之间的交互并仲裁团队之间的争议来解决这个问题。问题是,这种相互作用通常很难理解,而且很少提前知道。
• 本工作报告了 2022 年 2 月 21 日至 25 日在新南威尔士大学堪培拉空间澳大利亚国家并行设计设施 (ANCDF) 为期 5 天的研讨会上进行的第 14 次并行工程研究。 • 澳大利亚依赖外国卫星图像和测量数据,而这些图像和测量数据并未针对监测澳大利亚丛林大火燃料的可燃性进行优化,导致澳大利亚境内发生火灾。2020 年国家自然灾害皇家委员会强调需要在整个大陆上清晰地了解植物燃料负荷的数量和水分含量 [RD-1]。 • 澳大利亚国立大学 (ANU) 空间研究所 (InSpace) 此前为澳大利亚地球科学局和澳大利亚联邦科学与工业研究组织 (CSIRO) 开发了一份前阶段 A 报告,以支持他们对澳大利亚卫星交叉校准辐射计 (SCR) 和 AquaWatch Australia 任务的贡献。该报告描述了 OzFuel 任务、其科学目标以及一组任务要求和有效载荷/仪器性能要求,以满足任务目标 [RD-2]。
1. 简介 未来几年,航空航天和国防 (A&D) 行业将特别受到气候变化、能源价格、经济和技术等因素的影响,进一步推动客户对减少产品开发时间和成本的需求,而网络中心互操作性等新业务需求则导致相互依赖的系统之系统 (SoS) [Jamshidi 2009]。SoS 通过组合多个交互系统来提供所需的功能,但代价是增加复杂性和不确定性,这直接反映在相应的开发过程中 [Browning 1998]。为了在可容忍的时间范围内设计出像军用飞机这样的复杂 SoS,不同学科特定的开发过程已经并行化,每个流程都相当独立地管理。但这种并行工程 (CE) 范式与跨学科飞机设计的迭代性质相冲突,需要有效的跨域信息交换。因此,这些特点对同步的多域协作提出了重要挑战,而传统的领域分离的工程流程和异构工具环境无法充分提供这种挑战 [Broy et al. 2010] 因此,未来的集成开发流程必须重点关注。日常业务经验表明,特别是在系统工程和机械/电气工程领域特定交付物的集成过程中,这两个流程
摘要 在任何行业中,公司产品的质量、数量和交货时间对于其成功都至关重要。行业必须开发和应用精益、敏捷、配套制造和并行工程等新的管理理念。这项工作重点研究基于人体工程学的配套装配系统如何影响不同制造企业工人的健康和安全。以装配为导向的行业或具有大量重复性人工程序的行业通常使用配套生产。配套装配可最大限度地减少工作空间要求、操作员的行进距离和时间以及在制品库存。“改进的流程可以减少这类业务中的大量浪费和低效率。因此,本文进行了一项彻底的调查,以减少浪费并提高生产线的生产率。作为对配套装配系统后果的审查的一部分,我们对经理和主管、安全专家、安全工程师和工人进行了采访。为此,我们将分析员工对当前工作条件的感受,并将其与新的基于人体工程学的装配系统和旧系统进行比较。由于工作条件的改善,整个行业的生产力显著提高。此外,我们将几个重要的标准分为几类,以便将来与工人一起检查,以评估工人的人体工程学水平,并收集调查结果。关键词:人体工程学、生产力、安全、标准偏差、健康问题
摘要 在任何行业中,公司产品的质量、数量和交货时间对于其成功都至关重要。行业必须开发和应用精益、敏捷、配套制造和并行工程等新的管理理念。这项工作重点研究基于人体工程学的配套装配系统如何影响不同制造企业工人的健康和安全。以装配为导向的行业或具有大量重复性人工程序的行业通常使用配套生产。配套装配可最大限度地减少工作空间要求、操作员的行进距离和时间以及在制品库存。“改进的流程可以减少这类业务中的大量浪费和低效率。因此,本文进行了一项彻底的调查,以减少浪费并提高生产线的生产率。作为对配套装配系统后果的审查的一部分,我们对经理和主管、安全专家、安全工程师和工人进行了采访。为此,我们将分析员工对当前工作条件的感受,并将其与新的基于人体工程学的装配系统和旧系统进行比较。由于工作条件的改善,整个行业的生产力显著提高。此外,我们将几个重要的标准分为几类,以便将来与工人一起检查,以评估工人的人体工程学水平,并收集调查结果。关键词:人体工程学、生产力、安全、标准偏差、健康问题
摘要 在任何行业中,公司产品的质量、数量和交货时间对于其成功都至关重要。行业必须开发和应用精益、敏捷、配套制造和并行工程等新的管理理念。这项工作重点研究基于人体工程学的配套装配系统如何影响不同制造企业工人的健康和安全。以装配为导向的行业或具有大量重复性人工程序的行业通常使用配套生产。配套装配可最大限度地减少工作空间要求、操作员的行进距离和时间以及在制品库存。“改进的流程可以减少这类业务中的大量浪费和低效率。因此,本文进行了一项彻底的调查,以减少浪费并提高生产线的生产率。作为对配套装配系统后果的审查的一部分,我们对经理和主管、安全专家、安全工程师和工人进行了采访。为此,我们将分析员工对当前工作条件的感受,并将其与新的基于人体工程学的装配系统和旧系统进行比较。由于工作条件的改善,整个行业的生产力显著提高。此外,我们将几个重要的标准分为几类,以便将来与工人一起检查,以评估工人的人体工程学水平,并收集调查结果。关键词:人体工程学、生产力、安全、标准偏差、健康问题
摘要 在任何行业中,公司产品的质量、数量和交付时间对于其成功都至关重要。行业必须开发和应用精益、敏捷、配套制造和并行工程等新管理概念。本文重点研究基于人体工程学的配套装配系统如何影响不同制造企业工人的健康和安全。以装配为导向的行业或具有大量重复性人工程序的行业通常使用配套生产。配套装配可最大限度地减少工作空间要求、操作员的行进距离和时间以及在制品库存。“改进的流程可以减少这类业务中的大量浪费和低效率。因此,本文进行了彻底的调查,以减少浪费并提高生产线的生产率。作为对 Kitting 装配系统后果的检查的一部分,我们对经理和主管、安全专家、安全工程师和工人进行了采访。为此,我们将分析员工对当前工作条件的感受,并将其与新的基于人体工程学的装配系统和旧系统进行比较。由于工作条件的改善,整个行业的生产率显着提高。此外,我们将几个重要的标准分为几类,以便将来与工人一起检查,以评估工人的人体工程学水平并收集调查结果。关键词:人体工程学、生产力、安全、标准偏差、健康问题
摘要 在任何行业中,公司产品的质量、数量和交货时间对于其成功都至关重要。行业必须开发和应用精益、敏捷、配套制造和并行工程等新的管理理念。这项工作重点研究基于人体工程学的配套装配系统如何影响不同制造企业工人的健康和安全。以装配为导向的行业或具有大量重复性人工程序的行业通常使用配套生产。配套装配可最大限度地减少工作空间要求、操作员的行进距离和时间以及在制品库存。“改进的流程可以减少这类业务中的大量浪费和低效率。因此,本文进行了一项彻底的调查,以减少浪费并提高生产线的生产率。作为对配套装配系统后果的审查的一部分,我们对经理和主管、安全专家、安全工程师和工人进行了采访。为此,我们将分析员工对当前工作条件的感受,并将其与新的基于人体工程学的装配系统和旧系统进行比较。由于工作条件的改善,整个行业的生产力显著提高。此外,我们将几个重要的标准分为几类,以便将来与工人一起检查,以评估工人的人体工程学水平,并收集调查结果。关键词:人体工程学、生产力、安全、标准偏差、健康问题
摘要 小型卫星的数量急剧增加和商业化要求开发和生产过程能够在更短的时间内以合理的价格应对大量卫星。在 IRAS(经济型卫星综合研究平台)内,当地的太空和非太空企业以及研究机构共同合作并讨论他们的需求。这是在技术基础上与项目团队和行业进展会议一起完成的。研究和开发新技术以降低组件、卫星和卫星星座的开发和生产成本和时间。为了实现这一目标,该项目研究了几种不同的硬件和软件技术。在增材制造技术领域,研究了聚合物和陶瓷材料的使用,结合多功能和仿生结构,以实现具有集成功能的轻质结构。电力和水基推进系统作为先进的绿色推进技术得到开发,可提供足够的推力来将大量卫星分配到轨道上,并在其运行阶段后安全地脱离轨道,同时具有成本效益。此外,还利用 DCEP(数字并行工程平台)研究了一种无需物理接近的卫星协同设计新方法,该方法提供了一个基于 Web 的软件平台,支持使用自动化设计工具和算法。设计工具也是在 IRAS 内部开发的,包括用于星座设计和任务分析以及卫星设计的工具。IRAS 技术也是技术演示卫星任务 SOURCE 的一部分,SOURCE 是一颗立方体卫星,由斯图加特大学空间系统研究所和学生组织 KSat eV 合作开发和运营。本文概述了 IRAS 项目中这些活动领域的概念、成就和当前发展。
[1] Harald Köpping Athanasopoulos。2019 年。《月球村和太空 4.0:‘开放概念’是开展太空活动的新方式吗?》太空政策 49(2019 年),101323。[2] Edward Bachelder、David H Klyde、Noah Brickman、Sofia Apreleva 和 Bruce Cogan。2013 年。融合现实以增强飞行测试能力。在 AIAA 大气飞行力学 (AFM) 会议上。5162。[3] Leonie Becker、Tommy Nilsson、Paul Demedeiros 和 Flavie Rometsch。2023 年。增强现实服务于人类在月球上的操作:来自虚拟试验台的见解。在 2023 年 CHI 计算系统人为因素会议的扩展摘要中。1-8。 [4] Loredana Bessone、Francesco Sauro、Matthias Maurer 和 Matthias Piens。2018 年。月球及以外地区实地地质探索的测试技术和操作概念:欧空局 PANGAEA-X 活动。载于欧洲地球物理联合会大会摘要。4013 年。[5] D Budzyń、H Stevenin、Matthias Maurer、F Sauro 和 L Bessone。2018 年。欧空局为月球太空行走模拟制作月球表面地质采样工具原型。载于第 69 届国际宇航大会 (IAC),德国不来梅。[6] Andrea EM Casini、Petra Mittler、Aidan Cowley、Lukas Schlüter、Marthe Faber、Beate Fischer、Melanie von der Wiesche 和 Matthias Maurer。2020 年。欧空局的月球模拟设施开发:LUNA 项目。空间安全工程杂志 7, 4 (2020),510–518。[7] David Coan。2022 年。NEEMO 22 EVA 概述与汇报。技术报告。[8] Brian E Crucian、M Feuerecker、AP Salam、A Rybka、RP Stowe、M Morrels、SK Mehta、H Quiriarte、Roel Quintens、U Thieme 等人。2011 年。ESA-NASA“CHOICE”研究:在南极内陆康科迪亚站过冬,作为太空飞行相关免疫失调的类似物。在第 18 届 IAA 人类进入太空研讨会上。[9] Enrico De Martino、David A Green、Daniel Ciampi de Andrade、Tobias Weber 和 Nolan Herssens。 2023. 模拟低重力环境下的人体运动——弥合太空研究与地面康复之间的差距。神经病学前沿 14 (2023),1062349。[10] Gil Denis、Didier Alary、Xavier Pasco、Nathalie Pisot、Delphine Texier 和 Sandrine Toulza。2020. 从新太空到大太空:商业太空梦想如何变成现实。宇航学报 166 (2020),431–443。[11] Dean B Eppler。1991. 月球表面作业的照明限制。 NASA STI/Recon 技术报告 N 91(1991),23014。[12] Barbara Imhof、Waltraut Hoheneder、Stephen Ransom、René Waclavicek、Bob Davenport、Peter Weiss、Bernard Gardette、Virginie Taillebot、Thibaud Gobert、Diego Urbina 等人。2015 年。月球行走与人机协作任务场景与模拟。在 AIAA SPACE 2015 会议和博览会上。4531。[13] Curtis Iwata、Samantha Infeld、Jennifer M Bracken、Melissa McGuire、Christina McQuirck、Aron Kisdi、Jonathan Murphy、Bjorn Cole 和 Pezhman Zarifian。2015 年。并行工程中心基于模型的系统工程。在 AIAA SPACE 2015 会议和博览会上。4437。[14] Juniper C Jairala、Robert Durkin、Ralph J Marak、Stepahnie A Sipila、Zane A Ney、Scott E Parazynski 和 Arthur H Thomason。2012 年。在 NASA 中性浮力实验室进行 EVA 开发和验证测试。第 42 届国际环境系统会议 (ICES)。[15] Hyeong Yeop Kang、Geonsun Lee、Dae Seok Kang、Ohung Kwon、Jun Yeup Cho、Ho-Jung Choi 和 Jung Hyun Han。2019 年。跳得更远:在失重沉浸式虚拟环境中向前跳跃。2019 年 IEEE 虚拟现实与 3D 用户界面 (VR) 会议。699–707。https://doi.org/10.1109/VR.2019.8798251 [16] Lin-gun Liu。 2022. 火星和月球上的水。陆地、大气和海洋科学 33, 1 (2022), 3。[17] Erin Mahoney。2022. 美国宇航局将在亚利桑那州沙漠进行阿尔特弥斯月球漫步练习。https://www.nasa.gov/feature/nasa-to-practice-artemis- moonwalking-roving-operations-in-arizona-desert