结果:VNI的读取器2额定总体图像质量高于VNC(4.90 vs. 4.00; p <.05),而阅读器1没有发现显着差异(4.96 vs. 5.00; p> .05)。在VNC和VNI中的读者之间观察到了实质性的一致性(Krippendorff的Alpha范围:0.628-0.748)。两位读者对VNI的频率不完全发生频率(读者1:29%vs. 15%; p <.05;读者2:24%vs. 20%; p> .05)。尿酸和较小的石头(<5 mm)比VNC和VNI中的Caox和较大的石头更有可能被减去。总体而言,与VNC相比,VNI的石材减法率更高(读者1:22%比16%;阅读器2:25%vs. 10%; p <.05)。辐射剂量和管电压均未显着影响石材减法(p> .05)。
摘要 目的。基于皮层电图 (ECoG) 的脑机接口 (BCI) 是恢复神经功能障碍患者运动和感觉功能的有前途的平台。这种双向 BCI 操作需要同时记录 ECoG 和刺激,这在存在强刺激伪影的情况下具有挑战性。如果 BCI 的模拟前端在超低功耗模式下运行,这个问题会更加严重,这是完全植入式医疗设备的基本要求。在本研究中,我们开发了一种新方法,用于在刺激伪影到达模拟前端之前抑制它们。方法。利用基本的生物物理考虑,我们设计了一种伪影抑制方法,该方法采用在主刺激器和记录网格之间传递的弱辅助刺激。然后通过约束优化程序找到该辅助刺激偶极子的确切位置和幅度。在模拟和幻影脑组织实验中测试了我们方法的性能。主要结果。通过优化程序找到的解决方案在模拟和实验中都与最佳抵消偶极子相匹配。在模拟和脑幻影实验中分别实现了高达 28.7 dB 和 22.9 dB 的伪影抑制。意义。我们开发了一种简单的基于约束优化的方法来查找产生最佳伪影抑制的辅助刺激偶极子的参数。我们的方法在刺激伪影到达模拟前端之前对其进行抑制,并可能防止前端放大器饱和。此外,它可以与其他伪影缓解技术一起使用,以进一步减少刺激伪影。
摘要 - 恰好在具有最小碰撞的无构建环境中引导软机器人仍然是软机器人的开放挑战。当环境未知时,可能无法用于模拟和操作的导航的事先运动计划。本文提出了一种新颖的SIM到真实方法,可在模拟开放框架体系结构(SOFA)下的静态环境中指导电缆驱动的软机器人。SCE-NARIO的目的是在简化的横向气管插管过程中类似于其中一个步骤,在该过程中,机器人气管管由灵活的视频辅助内窥镜/stylet引导到上层气管larynx位置。在沙发中,我们采用二次编程逆求器来获得基于机器人模型的内窥镜/Stylet操纵的无碰撞运动策略,并编码与眼睛的视觉。然后,我们使用闭环非线性自动回收前模型(NARX)网络将虚拟视觉和关节空间运动识别的解剖学特征与关节空间相关联。之后,我们将学习的知识转移到机器人原型中,期望它仅根据其眼睛的视觉自动自动地在新的幻影环境中导航到所需的位置。实验结果表明,我们的软机器人可以根据从虚拟环境中学到的知识,在最小的碰撞运动中有效地通过非结构化的幻影训练到所需的位置。结果表明,闭环NARX预测和由SOFA引用的机器人电缆和棱镜关节空间运动之间的平均R平均系数为0.963和0.997。眼神的视线还表现出机器人尖端和震颤之间的良好对齐方式。
虚拟传感器是一种基于信息处理的设备,旨在收集有关无法直接访问的内部过程变量的信息。这个想法是,如果正在运行模拟并且既产生准确的输入又模仿产品在现实生活中和实时中的行为,那么该模拟模型就可以被装备以在不同位置进行测量。读数将从进行测量的虚拟传感器生成,并可用于补充来自物理传感器的信息。虚拟传感器学习解释不同变量之间的关系并观察所涉及的各种仪器的读数。虚拟传感器可以被视为物理传感器的一种幻影。
虚拟传感器是一种基于信息处理的设备,旨在收集有关无法直接访问的内部过程变量的信息。这个想法是,如果正在运行模拟并且既产生准确的输入又模仿产品在现实生活中和实时中的行为,那么该模拟模型就可以被装备以在不同位置进行测量。读数将从进行测量的虚拟传感器生成,并可用于补充来自物理传感器的信息。虚拟传感器学习解释不同变量之间的关系并观察所涉及的各种仪器的读数。虚拟传感器可以被视为物理传感器的一种幻影。
摘要:Niels Bohr的综合分析表明,经典世界是不可从量子力学衍生的必要的其他独立概念结构。测量结果必须始终经过经典表达。此外,线性“逆转”或任何其他单一线性模型/解释都不能导致观察到的非线性经典物理学。正如我们将看到的,构成一般相对性动态非线性时空的不变客观经典事件是这种经典结构。因此,需要经典的重力才能使许多相互不兼容的可能性成为观察到的非线性世界的具体现实的抽象和正式,完美的量子机械永恒的共存。这也意味着“量子重力”是伪造问题,一个幻影,“量子时空”的矛盾。
要评估现代飞机和飞机系统,需要了解如何优化空气动力学性能。如今,性能规格远远超出了点设计规格,并且在很大程度上取决于优化以满足特定的战术要求,无论飞行器是设计为拦截器、空中优势战斗机、战略运输机、战略轰炸机还是其他任何作战角色。目标是要求性能效率覆盖整个飞行包线,以满足作战需求,并且拥有最佳的武器、发动机和机身整体组合。F-14 和 F-15 是第一代采用这种方法设计和评估的战斗机。F-16、F-18、龙卷风和幻影 2000 等较新的战斗机设计都是在充分认识到优化性能的需要的情况下构思的。
要评估现代飞机和飞机系统,需要了解如何优化空气动力学性能。如今的性能规格远远超出了点设计规格,并且在很大程度上取决于优化以满足特定的战术要求,无论飞行器是设计为拦截器、空中优势战斗机、战略空运机、战略轰炸机还是任何其他作战角色。目标是要求性能效率覆盖整个飞行范围,以最佳的武器、发动机和机身整体组合满足作战需求。F-14 和 F-15 是第一代采用这种方法设计和评估的战斗机。F-16、F-18、龙卷风和幻影 2000 等较新的战斗机设计都是在充分认识到优化性能需求的情况下构思的。