这两个问题都可以通过使用基于 PID 控制器的经典控制系统方法来解决 [8-13]。然而,开发多维 PID 控制器很困难,因为它们没有理论背景。因此,这种综合有点直观,取决于经验法则,需要控制系统工程师的丰富经验。另一种可能性是使用反步或滑模控制。在 [14] 中,终端滑模和反步控制已成功应用于实时无人机。在 [15] 中,基于线性反馈表示的鲁棒控制器可减少动态不确定性和外部干扰,并设计应用于实时欠驱动系统。现代控制技术,尤其是最优控制理论,为开发高效、鲁棒的多维控制器提供了可能性 [16-20]。它们非常适合处理非常一般类型的跟踪问题。在 [21] 中,瞬时最优控制用于输入饱和的机器人轨迹跟踪。 [ 22 ] 提出了基于辛伪谱最优控制的三维欠驱动板条箱跟踪方法。[ 23 ] 证明了最优周期
为了对国际贸易的基本问题提供清晰的答案,一种标准方法是关注小型开放经济体 (SOE)。虽然传统上将 SOE 定义为以世界价格为给定的经济体,但在新贸易文献中,它被定义为以外国商品价格和出口需求计划为给定的经济体。我们开发了一个重力模型,该模型嵌套了所有标准微观基础,并展示了如何取极限,以便一个变得无限小的经济体表现得像 SOE。然后,我们推导出 SOE 的比较静态和最优政策。忽略标准税收不确定性,最优政策的特点是出口税和进口关税分别等于(逆)外国需求和供应弹性,就业补贴由规模弹性(在完全竞争下)或加价(在垄断竞争下)决定。
摘要 - 分布式量子计算(DQC)是一种新的范式,旨在通过较小的量子处理单元(QPU)的互连来扩展量子计算。共享的纠缠允许QPU之间的两个状态和门传送。这导致了量子处理能力的有吸引力的水平缩放,这是以纠缠共享协议引入的额外时间和噪声为代价的。因此,跨多个QPU划分量子电路的方法应旨在最大程度地减少分布式QPU之间所需的基于纠缠的通信量。现有协议倾向于主要集中于优化门传送或状态传送的纠缠成本,以涵盖QPU之间的操作,而不是同时涵盖QPU之间的操作。问题的最一般形式应在同一基础上处理门和状态传送,从而使两者组合的成本电路分区最小。这项工作介绍了基于图的公式,该公式允许对门和状态传送成本进行联合优化,包括栅极传送的扩展,将大门分组在一起,用于使用共同资源分配。该配方允许各种电路类型的较低的电子位成本。使用基本的遗传算法,根据平均E-BIT成本和时间缩放,获得了最先进方法的性能。索引术语 - 量词计算,分布式量子计算,优化,量子网络,量子通信
谱聚类是聚类无向图的一种常用方法,但将其扩展到有向图(有向图)则更具挑战性。一种典型的解决方法是简单地对称化有向图的邻接矩阵,但这可能会导致丢弃边方向性所携带的有价值信息。在本文中,我们提出了一个广义的谱聚类框架,可以处理有向图和无向图。我们的方法基于一个新泛函的谱松弛,我们将其引入为图函数的广义狄利克雷能量,关于图边上的任意正则化测度。我们还提出了一种由图上自然随机游走的迭代幂构建的正则化测度的实用参数化。我们提出了理论论据来解释我们的框架在非平衡类别的挑战性设置中的效率。使用从真实数据集构建的有向 K-NN 图进行的实验表明,我们的图分区方法在所有情况下均表现良好,并且在大多数情况下优于现有方法。
记录版本:该预印本的一个版本于 2022 年 1 月 15 日在 IET Quantum Communication 上发布。发布的版本请参阅 https://doi.org/10.1049/qtc2.12034 。
摘要:人类和机器之间的合作是最新工业革命的主要重点,称为“行业5.0”。本文旨在突出整个概念,以及行业5.0的关键应用,机遇和威胁。行业5.0的各种定义,重点是人类机器人合作的重要性以及对工业过程中人类和生态友好性的优先级。本文展示了行业5.0提供的独特和创造性的客户体验,同时还为工业公司带来了价值。此外,SWOT分析研究了行业5.0带来的优势,劣势,机会和威胁。实现可持续发展目标并获得竞争优势对于拥抱行业5.0的公司都是可能的。尽管有好处,但障碍比比皆是。诸如将人力资源纳入生产过程以及应对安全和道德问题的问题需要关注。
add_residuals.mvgam。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>3每个_neon_tick_data。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>4 augment.mvgam。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>5代码。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>6条件_weets.mvgam。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>7动态。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>10 emplemble.mvgam_forecast。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12 evaluate_mvgams。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 fevd.mvgam。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18拟合。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>19前载.mvgam。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>21公式。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>23 get_mvgam_priors。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>24 gp。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>30 gratia_mvgam_enhancements。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>31 Hindcast.mvgam。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>36 How_TO_CITE.MVGAM。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>37索引-MVGAM。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>39 irf.mvgam。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>39 JSDGAM。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>41 lfo_cv.mvgam。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。49 loglik.mvgam。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。52 loo.mvgam。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。54 lv_corlations。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>56 mcmc_plot.mvgam。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>57 Model.Frame.mvgam。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>580单调。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>59 mvgam。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>62 MVGAM类。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>75 mvgam_diagnostics。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>77 mvgam_draws。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>78 mvgam_families。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>81 MVGAM_FEVD类。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>85 MVGAM_FORECAST类。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>85 div>
在1969年R. Penrose理论上预测了在衰减或碰撞过程中KERR指标中负能量形成的影响。此外,还研究了具有负能量的颗粒的大地测量学的性质[1,2]。表明,在旋转黑洞的巨石中,对于此类颗粒的封闭轨道是不存在的。该测量学必须从引力半径内的区域出现。此外,还研究了Schwarzschild时空中具有负能量的颗粒。A. Grib和Yu。V. Pavlov [3]。他们表明,具有负能量的颗粒只能存在于事件视野内部的区域。然而,施瓦茨柴尔德黑洞是永恒的,我们必须考虑重力崩溃,以谈论具有负能量的颗粒的大地测量学的过去。黑洞被认为是严重重力崩溃的唯一结果。P。Joshi [4]表明,重力崩溃的结果可能是裸露的奇异性(有关详细信息,请参见[5,6])。这意味着在重力崩溃过程中,奇异性形成的时间小于明显的地平线形成时间,并且存在一个非跨空间,未来指导的大地测量学家族,这些家族过去终止于中央奇异性。M. Mkenyley等。 调查了有关广义vaidya时空的重力崩溃的问题[7],并表明这种崩溃的结果可能是赤裸裸的奇异性。M. Mkenyley等。调查了有关广义vaidya时空的重力崩溃的问题[7],并表明这种崩溃的结果可能是赤裸裸的奇异性。此外,还获得了质量功能的条件[8,9]。vaidya时空是宇宙审查制度侵犯的最早例子之一[10]。通常的Vaidya时空具有以下形式:
营养 - 尝试全天吃营养食品。运动 - 定期运动以减轻压力并感觉更好。即使进行一些体育锻炼也可以帮助!睡眠和休息 - 睡眠对您的身心健康非常重要。值得努力让睡个好觉。为自己准备的时间 - 每天花一些时间来照顾自己,即使只是几分钟。支持 - 所有新妈妈都需要他人的支持。不要害怕寻求帮助和信息!
di Paola,A.,Ventura,F.,Vignudelli,M.,Bombelli,A.,Severini,M。(2020)。用于硬核小麦的普遍物候模型:在意大利半岛上应用。食品和农业科学杂志,100(11),4093-4100 [10.1002/jsfa.9864]。