在零射门学习(ZSL)领域,我们在广义零局学习(GZSL)模型中介绍了偏爱数据的模型。为了解决这个问题,我们引入了一个名为D 3 GZSL的端到端生成GZSL框架。对于更平衡的模型,该框架尊重所见和合成的未见数据分别为分布和分布数据。d 3 GZSL包括两个核心模块:分配双空间蒸馏(ID 2 SD)和分布外批处理蒸馏(O 2 DBD)。ID 2 SD在嵌入和标签空间中的教师学生成果对齐,从而增强了学习连贯性。o 2 dbd在每个批次样本中引入了低维度的低分布表示形式,从而捕获了可见类别和未看到类别之间的共享结构。我们的方法证明了其在既定的GZSL基准测试中的有效性,无缝地集成到主流生成框架中。广泛的例子始终展示D 3 GZSL提高了现有生成GZSL方法的性能,从而低估了其重新零摄入学习实践的潜力。该代码可在以下方面获得:https://github.com/pjbq/pjbq/d3gzsl.git.git
摘要:人类和机器之间的合作是最新工业革命的主要重点,称为“行业5.0”。本文旨在突出整个概念,以及行业5.0的关键应用,机遇和威胁。行业5.0的各种定义,重点是人类机器人合作的重要性以及对工业过程中人类和生态友好性的优先级。本文展示了行业5.0提供的独特和创造性的客户体验,同时还为工业公司带来了价值。此外,SWOT分析研究了行业5.0带来的优势,劣势,机会和威胁。实现可持续发展目标并获得竞争优势对于拥抱行业5.0的公司都是可能的。尽管有好处,但障碍比比皆是。诸如将人力资源纳入生产过程以及应对安全和道德问题的问题需要关注。
考古特征或历史街区;x. 对任何已知埋葬地点的确认;xi. 对现场任何洪泛区、资源保护区、湿地、陡坡、溃坝淹没区的确认;xii. 停车场,包括所需停车场和拟议停车位的列表。xiii. 一份表格,其中包含对地块覆盖率和不透水表面率的计算。2. 拟议开发项目半英里范围内所有主要交叉路口的标识和距离;3. 整个地块的边界,包括路线和距离;4. 主题地块内任何现有或拟议的地块线、地役权或通行权;5. 主题地块和所有相邻财产的当前分区和主要用途;6. 本章第 6 条所述的任何重叠分区边界的图形描述; 7. 所有现有和拟议的建筑物、构筑物、附属构筑物(包括室外照明、围栏、自行车架、墙壁或树篱、垃圾箱)、标志、景观美化和缓冲区、雨水管理设施和其他改进设施的大致位置、大致尺寸、高度、楼层数和退距的图形描述;8. 所有水体、美国地质调查局常年溪流、洪泛区、资源保护区、流域、湿地、溃坝淹没区和陡坡的边界的图形描述;9. 一份概括性的景观规划,其中显示现有植被、拟议的清理范围,并指明根据本章第 5 条第 5 款的景观美化和缓冲场要求将安装的植被的位置和类型,以及任何其他拟议的屏障、缓冲场或景观美化的大致位置和材料描述; 10. 现有和拟议的停车和装卸区以及任何其他不透水表面(如车道、街道(及名称)、人行道、自行车道或多用途小道以及运动场地)的位置和尺寸; 11. 所有出入口的位置和描述,包括所有拟议的地块间连接; 12. 拟议开发项目在平面图上显示的每一段道路上产生的预计每日车辆出行次数;
关键词 路径规划,粒子群优化,广义 PSO,光学避障,无人机,无人机编队。摘要 本文研究了多旋翼无人机(UAV)在编队形状中协作检查周围表面的路径规划技术问题。我们首先将问题描述为在复杂空间中规划编队质心路径的联合目标成本。然后提出了一种路径规划算法,称为广义粒子群优化算法,用于在避开障碍物并确保飞行任务要求的同时构建最佳的可飞行路径。然后结合路径开发方案为每架无人机生成相关路径以保持其在编队配置中的位置。进行了仿真、比较和实验以验证所提出的方法。结果表明,使用 GEPSO 的路径规划算法是可行的。缩写
我们在二维材料的分散体中发展了一个磁故障理论(MB),其中两个或多个半经典的回旋轨道相互接近。MB是由于几个轨迹之间的量子隧穿而导致的,这导致了非平凡的散射幅度和相。我们表明,对于任何鞍点,可以通过将其映射到1D紧密结合链中的散射问题来解决此问题。此外,布里渊区边缘上的磁故障发生促进了批量兰道水平状态和2D轨道网络的形成。这些扩展的网络状态构成了有限能量扩展的分散迷你频段。可以在运输实验中观察到这种效果,这是量子厅杆中纵向散装电导的强大增强。此外,可以通过可视化大量电流模式在STM实验中探测它。
精确控制系统参数和广泛的优化在实现量子信息技术方面发挥着至关重要的作用。另一个挑战是,当针对实际可制造系统时,组件制造差异的存在需要对每个系统进行单独优化。为了应对这一挑战,我们开发了一个基于深度强化学习 (RL) 的通用优化框架。通过将我们的方法应用于基于光注入锁定 (OIL) 的现实世界量子发射器,我们证明了我们的 RL 代理可以自主识别最佳操作区域,并将其知识推广到相同类型的新量子发射器。这项工作为使用现代 RL 算法有效优化复杂系统提供了一条新途径。
对称性是一种不变性:数学对象在一系列运算或变换下保持不变的性质。物理系统的对称变换是理解自然物理定律的基石之一。以恒定相对速度运动的观察者之间的对称性使伽利略提出了相对论原理,为现代物理学的基础提供了初步见解。正是控制麦克斯韦方程的对称性,即洛伦兹群,使爱因斯坦将伽利略的思想推广到狭义相对论,这是我们理解基本粒子运动学以及原子核稳定性的基础。在量子领域,由于自旋和统计学之间的深层联系,人们可以从对称性开始解释元素周期表。从更现代的角度来看,洛伦兹群的表示理论为开始组织相对论量子场理论提供了起点。基本粒子的量子数由对称群组织。对称群与规范对称性、自发对称性破缺和希格斯机制一起被用来构建基本粒子的标准模型,这是 20 世纪最伟大的科学成就之一。随着与扩展算子相关的各种新型对称性的发现,量子场论的最新研究正在经历一场进一步的革命。这些广义全局对称性 [1] 包括高阶形式对称性、范畴对称性(如高阶群对称性或不可逆对称性),甚至更普遍的子系统对称性等。这些新颖的对称性从根本上扩展了以前仅仅基于李代数和李群数学的标准对称概念,它们基于更先进的数学结构,概括了高阶群和高阶范畴。广义对称性有望对我们理解从凝聚态物理学到量子信息、高能物理学甚至宇宙学等各个物理学领域相关的量子场动力学产生深远的影响。1
Ignazio Ciufolini 1 , Claudio Paris 2 , Erricos C. Pavlis 3 , John Ries 4 , Richard Matzner 5 , Antonio Paolozzi 2 , Emiliano Ortore 2 , Giuseppe Bianco 6 , Magdalena Kuzmicz-Cieslak 3 , Vahe Gurzadyan 7 , Roger Penrose 8 1 中国科学院武汉物理与数学研究所,精密测量科学与技术创新研究院,武汉 430071,中国 2 罗马大学航空工业学院,意大利罗马 3 马里兰大学戈达德地球科学技术与研究 II(GESTAR II),美国巴尔的摩县 4 德克萨斯大学奥斯汀分校空间研究中心,美国奥斯汀 5 德克萨斯大学奥斯汀分校温伯格中心引力物理中心,美国德克萨斯州奥斯汀6 意大利空间科学机构,CGS-Matera,意大利 7 宇宙学和天体物理中心,阿里哈尼安国家实验室和埃里温国立大学,亚美尼亚埃里温 8 牛津大学数学研究所,英国牛津
营养 - 尝试全天吃营养食品。运动 - 定期运动以减轻压力并感觉更好。即使进行一些体育锻炼也可以帮助!睡眠和休息 - 睡眠对您的身心健康非常重要。值得努力让睡个好觉。为自己准备的时间 - 每天花一些时间来照顾自己,即使只是几分钟。支持 - 所有新妈妈都需要他人的支持。不要害怕寻求帮助和信息!
隶属关系1 Tsinghua-Berkeley深圳学会,Tsinghua深圳国际大学研究生院,Tsinghua University,Tsinghua University,Anzhen 518055,中国2号深圳市ZNV技术有限公司,深圳,518000,中国4自动化系,Tsinghua University,100084,中国北京5号机械,电气和信息工程学院,山东大学,山东大学,威海,威海,威海,山东,264209,中国。摘要及时确定青少年精神障碍是全球公共卫生挑战。单个因素由于其复杂而微妙而难以检测出异常。此外,没有用于青少年精神疾病的交互式机器人的广义多模式的c creening(CAS)系统。在这里,我们设计了一个带有迷你游戏的Android应用程序,并在便携式机器人中部署了聊天记录,以筛选3,783名中学生,并构建多模式筛查数据集,包括面部图像,生理标志,配音录音和文本转录本。我们开发了一种称为游戏的模型(具有Ttention的G Eneralizatized模型和M BraceNet的M BraceNet),该模型具有新颖的注意机制,该机制将跨模式特征集成到模型中。游戏以高精度(73.34% - 92.77%)和F1得分(71.32% - 91.06%)评估青春期心理状况。我们发现每种方式都会动态地促进各种精神障碍之间的精神障碍筛查和合并症,这表明可解释模型的可行性。这项研究提供了一种能够获取多模式信息并构建广义的多模式整合算法的系统,并具有新颖的注意机制,用于早期筛查青少年精神障碍。关键字:青少年精神障碍,心理健康筛查,多模式学习,人类计算机互动,计算机辅助筛查。主要的青春期是生命发展的关键时期,在此期间主要的社会心理