。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年2月14日。 https://doi.org/10.1101/2025.02.12.637932 doi:Biorxiv Preprint
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年2月14日。 https://doi.org/10.1101/2025.02.12.637932 doi:Biorxiv Preprint
摘要。大西洋子午翻转循环(AMOC)在塑造北大西洋地区及其他地区的气候条件方面起着至关重要的作用,其未来的稳定性是一个令人关注的问题。虽然对面对地表淡水强迫(FWF)的AMOC稳定性进行了彻底的研究,但其对变化CO 2的库里库反应在很大程度上没有探索,从而无法全面了解其在全球变暖下的稳定性。在这里,我们使用地球系统模型探索AMOC的稳定性,因为面对北大西洋和大气CO 2在180至560 ppm之间的FWF的组合变化。我们找到了与定性不同的对流模式相关的四个不同的AMOC状态。Apart from an “Off” AMOC state with no North Atlantic deep-water formation and a “Modern”-like AMOC with deep water forming in the Labrador and Nordic seas as observed at present, we find a “Weak” AMOC state with convection occurring south of 55° N and a “Strong” AMOC state characterized by deep-water formation ex- tending into the Arctic.在整个CO 2的范围内,关闭状态和弱状态是稳定的,但仅适用于正FWF。对于一系列正FWF,现代状态在高于前工业的CO 2下是稳定的,仅对于负FWF而言,对于较低的CO 2。最后,强度仅对高于280 ppm的CO 2和FWF <0.1 SV才稳定。Genally,AMOC的强度随着CO 2的增加而增加,并且随着FWF的增加而减小。我们的AMOC稳定性景观有助于解释寒冷气候中的AMOC不稳定性,尽管它并不直接适用于百年纪念时间尺度上对全球变暖的根本性瞬时反应,但它可以提供有关AMOC可能长期命运的有用信息。例如,虽然在工业前的范围下,AMOC在模型中是可以单位的,但对于高于400 ppm的CO 2浓度,OFF状态也变得稳定,这表明在较温暖的气候中的AMOC关闭可能是不可逆转的。
GDM包装。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2 Counculate.gdm.deviance。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4格式。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 GDM。4 GDM。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 gdm.crssvalidation。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 gdm.partition.deviance。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13 GDM. Transform。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 14 GDM.Varimp。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 16 gdmdissim。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。13 GDM. Transform。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 GDM.Varimp。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 16 gdmdissim。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。14 GDM.Varimp。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16 gdmdissim。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>18 iSplineXtracttract。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>19 plot.gdm。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>20个情节。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>21 predict.gdm。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>西南23。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 25 subamam.SitePair。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>西南23。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>25 subamam.SitePair。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。25摘要。gdm。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。26
相干的光藻效应导致在相干光束的吸收干扰下产生电流,并允许铭文的空间充电光栅铭文,从而导致二阶敏感性(𝝌(2))。铭刻的光栅会自动导致干扰光束之间的准阶段匹配。理论和实验研究,考虑到第二次谐波产生的堕落病例,显示出显着的转化效率提高。然而,理论和实验之间的联系尚未完全确定,因此对于给定材料平台的一般准则和可实现的转换效率仍不清楚。在这项工作中,在理论上分析了光学波导中相干光钙化效应的现象学模型。该模型预测了非排优体总和生成的存在准阶段匹配光栅,这是第一次在实验中确认。此外,配制了连贯的光藻过程中空间充电光栅铭文的时间动力学。基于开发的理论方程式,提取了氮化硅化学过程的材料参数。获得的结果提供了比较不同平台的性能和潜力的基础。这项工作不仅补充了一致的光钙效应理论,而且还使我们能够确定关键参数和限制因素,以铭文(2)光栅。
量子密钥分布(QKD)的目的是给出两个当事方 - Alice&Bob - 在共享量子通道时产生秘密密钥的可能性。例如,在Ekert [8]提出的实现中,该通道由产生分配给Alice&Bob的纠缠粒子的来源组成。在每个回合中,爱丽丝和鲍勃的每个粒子都通过在几个测量设置中选择一个粒子来测量一个粒子。主张爱丽丝的测量结果是安全的,即任何第三方 - 夏娃 - 可能控制量子通道的未知,可以通过推断(从爱丽丝和鲍勃的测量结果中)来保证,源源发射的状态接近纯的两部分纠缠状态。这可以确保鲍勃的结果与爱丽丝的结果选择相关,如果他选择了适当的测量设置,即爱丽丝和鲍勃的措施结果可以形成秘密钥匙。
我们考虑了一大类拉姆齐干涉测量协议,这些协议通过在相位信号印在 N 个粒子的集体自旋上之前和之后进行压缩和非压缩操作而得到增强。我们报告了针对任何给定粒子数和 (非) 压缩强度的分析优化。即使在压缩和非压缩相互作用期间包含实验相关的退相干过程,也可以应用这些结果。然而,本文不考虑两种相互作用之间的噪声。这提供了压缩回波协议的广义表征,恢复了许多已知的量子计量协议作为局部灵敏度最大值,从而证明了它们的最优性。我们发现了一个新的协议。其灵敏度增强依赖于压缩的双重反转。在一般的回声协议类别中,新发现的过度解扭曲协议由于其在强集体失相情况下的海森堡缩放而被挑选出来。
摘要:通用的很少的语义分割(GFSS)目标在学习一组基本类别的分割后,使用一些带注释的示例将新颖对象类别进行分割。典型的GFSS培训涉及两个阶段 - 基类学习,然后是新颖的课程和学习。尽管现有方法表现出了希望,但在新颖的班级数量显着时,它们通常会挣扎。大多数当前方法都冻结了编码器主链以保持基类精度;但是,冻结编码器骨架可以严重阻碍新班级中新型信息的同化。为了应对这一挑战,我们建议在GFSS中使用增量学习策略来学习编码器骨干和新型类原型。受到低级适应技术(LORA)最近成功的启发,我们通过新颖的重量分解方法向GFSS编码器主链引入了Increthorth学习。我们新提出的等级自适应权重合并策略对在编码器主链各个层中吸收的新颖性不同。在我们的工作中,我们还将增量学习策略介绍给新型类别的类原型学习。我们在Pascal-5 I和Coco-20 I数据库上进行了广泛的实验,展示了增量学习的有效性,尤其是当新颖的类人数超过基础类别时。使用我们提出的基于权重分解的增量学习(WFIL)方法,以概括性的语义分段建立了一组新的最先进的精度值。
摘要 本文提出了两种新的逻辑函数泛化,分别基于非广义热力学、q-逻辑方程和任意阶逻辑方程。它通过将混沌理论与逻辑方程相结合来展示混沌理论的影响,并揭示了微小的参数变化如何将系统行为从确定性行为转变为非确定性行为。此外,本文还介绍了 BifDraw——一个使用经典逻辑函数及其泛化绘制分岔图的 Python 程序,说明了系统对条件变化的响应的多样性。该研究通过研究其复杂的动力学并提供可能在热力学基本状态和熵方面具有新意义的新泛化,为逻辑方程在混沌理论中的地位提供了关键作用。此外,本文还研究了方程的动力学性质及其中的分岔图,这些图呈现出复杂性和令人惊讶的动态系统特征。BifDraw 工具的开发体现了理论概念的实际应用,有助于进一步探索和理解混沌理论中的逻辑方程。这项研究不仅加深了对逻辑方程和混沌理论的理解,还介绍了可视化和分析其行为的实用工具。
广义概率理论(GPTS)提供了一个框架,可以研究一系列可能的理论,包括经典理论,量子理论以及其他理论。通常,扩大GPT的状态空间会导致更少的测量结果,因为额外的状态对效应集和测量的成分产生了更强的限制。这可能对信息处理有影响。在框世界中,可以实现任何无信号分布的GPT,在铃铛基础上没有测量的类似物,因此不可能进行纠缠交换的类似物。缺乏对Box World中多个系统的测量的全面研究。在这里,我们详细考虑了这样的测量,可以通过顺序与单个系统进行交互(称为接线)以及无法执行的测量值,以及那些无法执行的测量值。我们计算出少数输入,输出和各方的情况的所有可能的框世界效果,以识别那些是接线的效果。盒子世界的较大状态空间导致了很小的效果空间,因此盒子世界的影响广泛适用于GPT。我们还通过研究状态歧视,非局部性蒸馏和非纠缠的非局部性类似物来显示非织物用于信息处理的一些可能用途。最后,我们将结果与逻辑上一致的经典过程和情境情景的组成联系起来。通过增强对框世界中测量值的理解,我们的结果可能在研究量子理论可以基于的可能的基本原理的研究中很有用。