1 加州大学河滨分校伯恩斯工程学院电气与计算机工程系纳米器件实验室,加利福尼亚州河滨市 92521,美国 2 波兰科学院高压物理研究所 CENTERA 实验室,波兰华沙 01-142 3 加州大学河滨分校伯恩斯工程学院材料科学与工程项目声子优化工程材料中心,加利福尼亚州河滨市 92521,美国 4 格但斯克理工大学计量与光电子系,波兰格但斯克 80-233 5 华沙理工大学 CEZAMAT 先进材料与技术中心,波兰华沙 02-822 6 蒙彼利埃大学和法国国家科研中心查尔斯库仑实验室,法国蒙彼利埃 34950美国加利福尼亚州里弗赛德市 92521
我们报告了在六方氮化硼封装的双栅极单层 WS2 中的电子传输测量结果。使用从室温到 1.5 K 工作的栅极欧姆接触,我们测量了本征电导率和载流子密度随温度和栅极偏压的变化。本征电子迁移率在室温下为 100 cm2/(Vs),在 1.5 K 下为 2000 cm2/(Vs)。迁移率在高温下表现出强烈的温度依赖性,与声子散射主导的载流子传输一致。在低温下,由于杂质和长程库仑散射,迁移率达到饱和。单层 WS2 中声子散射的第一性原理计算与实验结果高度一致,表明我们接近这些二维层中传输的本征极限。
在2.3×10 - 5和1.4×10 - 4 s cm -1之间,具体取决于特定的IL。此外,对于[PMPYRR] [TFSI]样品,获得了最高的锂反式数量为0.71。li/lifepo使用这些SPES在不同C速率下在室温下显示出出色且稳定的电池性能。[PMPYRR] [TFSI]样品达到了最高的排放能力值,分别达到137 mAh.g -1和117 mAh.g -1在C/10和C/2速率,库仑效率高(〜100%)和低容量后,在100个周期后淡出较高的容量。使用P(VDF-TRFE-CFE)允许开发室温固态锂离子电池,并且改进的结果与高聚合物介电常数相关,从而促进了IL离子离子的解离,从而提高了离子迁移率。
我们考虑在填充因子8 /17处的分数量子霍尔效应(FQHE),其中在双层石墨烯的Zeroth Landau水平上观察到了不可压缩性的特征。我们提出了一个用“(8/3)21 3” Parton波函数描述的Abelian状态,其中Parton本身形成了FQHE状态。该状态在拓扑上与摩尔阅读状态的女儿状态的8/17 Levin-Halperin State不同。我们在双层石墨烯的Zeroth Landau水平的8/17处进行了库仑相互作用的广泛数值精确对角线化,但发现我们的结果无法最终确定基本基态的拓扑顺序。我们将(8 /3)21 3边缘的低能效率理论进行了预测,并对该状态的实验可测量特性进行了预测,该特性可以证明它除了8/17 levin-halperin状态。
我们提出了使用局部费米模式(LFM)而不是Qubits的通用量子计算机的实际实现。该设备由量子点组成 - 由混合超导岛和点之间的可调电容耦合耦合。我们表明,对库珀对拆分,弹性共同努力和库仑相互作用的连贯控制实现了由Bravyi和Kitaev [1]定义的通用量子门集。由于与电荷Quber的相似性,我们预计电荷噪声将是反应的主要来源。出于这个原因,我们还考虑了一种替代设计,量子点与超导体具有可调耦合。在第二次设备设计中,我们表明有一个最佳位置,局部费米子模式是充电中性的,使设备对电荷噪声效应不敏感。最后,我们比较了设计及其实验局限性,并提出了未来克服它们的努力。
我们研究了由附着在磁绝缘体和金属电极上的单级量子点组成的混合系统的自旋热电特性。磁绝缘体被认为是铁磁类型的,是磁振子的源,而金属铅是电子的储存器。磁绝缘体和金属电极之间的温度梯度会诱导流过系统的自旋电流。产生的磁振子(电)型自旋电流通过量子点转换为电(磁振子)自旋电流。将流过系统的自旋和热流扩展至线性阶,我们引入了基本的自旋热电系数,包括自旋电导、自旋塞贝克和自旋珀尔帖系数以及热导。我们在两种情况下分析了系统的自旋热电特性:在大型点库仑排斥极限下以及当这些相互作用有限时。
一旦达到寿命终止(EOL),预计可再生能源(PVS)面板将大量采用可再生能源(PVS)面板。尽管具有最高的体现能量,但呈现的光伏回收却忽略了PV细胞中发现的高纯度硅。在此,开发了一种可扩展且低的能量工艺,以通过避免能源密集型高温过程的过程从EOL太阳能电池板中恢复原始的硅。提取的硅被升级,形成与基于货运硅相当的性能的锂离子电池阳极。阳极在200个周期后保持87.5%的能力,同时保持高库仑效率(> 99%)为0.5 a g -1充电率。这个简单可扩展的过程将EOL - 极性面板升级为高价值的基于硅的阳极可以缩小净零废物经济性的差距。
我们表明,剪切的石墨烯双层可以调节以具有扁平的低能带,以供大量的Moir'e超级细胞。在此制度中,相互作用的系统易于发展破碎的对称阶段,而山谷对称性破裂为主要模式。对称性的强信号有利于配对不稳定性的发作,其中库珀对中具有相反自旋投影的电子生活在不同的山谷中。由于排斥的库仑相互作用,费米线变得扭曲了,这使得筛选高度各向异性,从而在某些相互作用通道中很容易引起吸引力。我们还表明,剪切的石墨烯双层提供了实现奇偶校验和山谷象征的综合分解的可能性,使其非常适合研究二维电子系统中的相关性与拓扑之间的相互作用。
Penson – Kolb模型[1]可以源自一般的微观紧密结合哈密顿式。在这种方法中,库仑的排斥会导致相互作用的相互作用j。然而,对跳跃积分也可以被视为具有正值和负值的效果模型参数[2-4]。在平方晶格的情况下,超导相机独立于j的符号。对于排斥对跳跃相互作用而发生的超导性通常称为η -type配对。在此阶段,配对电子的总动量为(π,π)。结果,原始的翻译不变性被损坏,超导顺序参数从一个站点变为相邻的参数。尽管,η -pairing对抗磁对破坏[5],但量子量化和meissner效应出现在此状态[6]。在这里,我们证明了排斥对跳跃相互作用可能会导致在非双分部分三角晶格上稳定的超导阶段。
水氧化还原流量电池(ARFB)构成了一种有前途的电网电力储存技术,但是要实现超过1.23 V热力学水分拆分窗口,具有高库仑效率和较长寿命,这是一项挑战。pH解耦合 - 在vegoly和posolyte之间创建pH值差 - 可以扩大操作电压窗口并改善长期操作稳定性。但是,由于pH梯度引起的酸性跨界,这会惩罚效率。随着水分裂窗口的电压随pH的线性变化,而跨界通量呈指数变化,我们采用了轻度的酸性和轻度的碱性电解质,以在开放电路电压> 1.7 V处开发具有较高的圆形能源效率的细胞。