2 reaxff输入3 2.1力场规范。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 2.2推荐的晶格大会。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 2.3平滑的势能表面。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 2.4债券订单和距离截止。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 2.5非反应模式。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 2.6电荷平衡。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 2.6.1电荷约束。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。7 2.7原子应激(每种原子应力张量)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8
热力学基本原理、相共存、吉布斯相律和相图 理想气体状态方程和范德华理论的扩展 朗道理论和振动原理(金兹堡-朗道) 理想气体、晶格气体的统计理论和气体与固体合金热力学性质的常规溶液理论。 应力张量的统计力学:维里尔公式 量子谐振子的统计和固体的比热 自旋统计:顺磁性和铁磁性,铁磁性的平均场近似
22 332问题170 22.1课程组织。。。。。。。。。。。。。。。。。。。。。。。。。170 22.2应力张量。。。。。。。。。。。。。。。。。。。。。。。。。。。170 22.3菌株。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。171 22.4典型模量。。。。。。。。。。。。。。。。。。。。。。。。。。。。171 22.5应力和菌株的基质表示。。。。。。。。。。。。171 22.6其他线性属性。。。。。。。。。。。。。。。。。。。。。。。。173 22.7收益标准。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。174 22.8加强机制。。。。。。。。。。。。。。。。。。。。。177 22.9接触力学。。。。。。。。。。。。。。。。。。。。。。。。。。180 22.10纳米互动。。。。。。。。。。。。。。。。。。。。。。。。。。。181 22.11冰刀力学。。。。。。。。。。。。。。。。。。。。。。。。。。182 22.12Weibull统计。。。。。。。。。。。。。。。。。。。。。。。。。。。185 22.13VisCoalasticity。。。。。。。。。。。。。。。。。。。。。。。。。。。。。185 22.14Noninlinear粘弹性和蠕变。。。。。。。。。。。。。。。。189
显微镜和宏观水平的压力张量(相当于负应力张量)都是工程和科学的许多方面,包括流体动力学,固体力学,生物物理学和热力学。从这个角度来看,我们回顾了计算微观压力张量的方法。建立了平衡和非质量系统的不同压力形式之间的连接。我们还指出了该领域的几个挑战,包括有关微观压力张量定义的历史争议;具有多体和远程电位的困难;软件和综合工具的不足;以及缺乏探测纳米级压力张量的实验途径。建议未来的方向。
目的本课程的目标是学习如何在力学中使用高级数学工具,学习如何在可变形的身体,流变学响应中构建复杂应力 - 应变状态的物理和数学模型,并学习如何设计静态多样化的不确定的结构。在本课程中,学生将获得以下能力:能够在力学中使用高级数学工具,能够在可变形物体中构建复杂应力 - 应变状态的物理和数学模型,设计静态地倍增不确定的结构。计划遵循和完成课程的计划义务;相关研究文献的介绍;课程主题的概述; 3D连续体的概念;凯奇(Cauchy)对应力矢量,正常和剪切应力的定义,在变形体中有限体积的静态平衡,考奇(Cauchy)的压力定理;应力张量(Cauchy,第一Piola-Kirchhoff,第二个Piola-Kirchhoff,Biot等。学习成果);应力张量的偏离和静水部分;主应力和3D中的最大剪切应力;压力张量和压力张量偏离部分的不变性;菌株理论;位移载体,变形梯度,变形张量,小/有限菌株理论;小应变张量的几何解释;应变的兼容条件;由于外部载荷引起的弹性应变能;能量方法,每单位体积的应变能密度;虚拟工作的原则;理想情况是弹性材料,绿色弹性;物质各向异性;各向同性,线性弹性材料;从实验中确定材料常数;胡克定律,超弹性;体积和失真工作/能量;温度的影响; navier-lame方程;特定的应力应变状态;通风应力功能;使用FEM的计算机模拟;复杂的现实生活中的例子和案例研究的先决条件符合硕士机械工程研究计划的入学条件 - 研发计划。
>s lurncnt,I lnlroJut。:tion,剪切力和D�1h.l i ng剪切力和弯矩的微分方程,静定梁的剪切力和弯矩图。桁架:介绍,简单桁架和简单桁架的解决方案,截面法;接头法;如何确定构件是处于拉伸还是压缩状态;简单桁架;零力构件质心和惯性矩:介绍,平面,曲线,面积,体积和复合体的质心,平面面积的惯性矩,平行轴定理和垂直轴定理,复合体的惯性矩。运动学和动力学:线性运动、瞬时中心、达朗贝尔原理、刚体旋转、冲量和动量原理、功和能量原理。简单应力和应变:应力的定义、应力张量、轴向载荷构件的法向应力和剪应力、应力-应变关系、延性和脆性材料单轴载荷的应力-应变图、胡克定律、泊松比、剪应力、剪应变、刚度模量、弹性常数之间的关系。不同横截面构件的一维载荷、温度应力、应变能。
1.1 简介 1 1.1.1 材料力学和弹性理论 1 1.1.2 历史发展 2 1.2 本书范围 3 1.3 分析和设计 4 1.3.1 分析在设计中的作用 6 1.3.2 安全系数的选择 6 1.3.3 案例研究 7 1.4 平衡条件 8 1.5 应力的定义和分量 9 1.5.1 符号约定 11 1.5.2 剪应力相等 12 1.5.3 应力的一些特殊情况 12 1.6 内部力合力和应力关系 13 1.6.1 应力的基本公式 15 1.6.2 组合应力 17 1.7 倾斜截面上的应力 17 1.7.1 轴向荷载构件 18 1.8 物体内部的应力变化 20 1.8.1 平衡方程 20 1.9 平面应力变换 23 1.9.1 应力张量 25 1.9.2 平面应力状态的极坐标表示 25 1.9.3 平面应力状态的笛卡尔表示 25
1.1 简介 1 1.1.1 材料力学和弹性理论 1 1.1.2 历史发展 2 1.2 本书范围 3 1.3 分析和设计 4 1.3.1 分析在设计中的作用 6 1.3.2 安全系数的选择 6 1.3.3 案例研究 7 1.4 平衡条件 8 1.5 应力的定义和分量 9 1.5.1 符号约定 11 1.5.2 剪应力相等 12 1.5.3 应力的一些特殊情况 12 1.6 内部力合力和应力关系 13 1.6.1 应力的基本公式 15 1.6.2 组合应力 17 1.7 倾斜截面上的应力 17 1.7.1 轴向荷载构件 18 1.8 物体内部的应力变化 20 1.8.1 平衡方程 20 1.9 平面应力变换 23 1.9.1 应力张量 25 1.9.2 平面应力状态的极坐标表示 25 1.9.3 平面应力状态的笛卡尔表示 25
弹性和塑性理论、应力张量、应力变换、应变变换、八面体应变、有限变形、莫尔圆、各向同性和均质材料的胡克定律、平面应力和平面应变。塑性理论、金属屈服标准、冯·米塞斯屈服标准、特雷斯卡屈服标准、材料行为模型、列维米塞斯(流动法则)和普朗特-罗伊斯应力应变关系。滑移线场理论、亨基定理、滑移线图、最简单滑移线场。金属成型工艺:轧制 - 轧制压力、驱动扭矩和功率、功率损耗、拉丝 - 拉拔力和功率、最大允许压缩量、挤压 - 工作负荷、锻造 - 最大锻造力、深拉 - 拉拔力的估计、弯曲 - 工作负荷、回弹、冲孔和落料 - 变形模型和断裂分析、工作力的确定、金属成型中的摩擦和润滑。
教学大纲 电动力学 (08 小时) 电动势和运动电动势、法拉第电磁感应定律和磁场中的能量、麦克斯韦方程组、麦克斯韦如何固定安培定律、物质中的麦克斯韦方程组、边界条件 电动力学中的守恒定律 (06 小时) 连续性方程、坡印廷定理、电动力学中的牛顿第三定律、麦克斯韦应力张量、动量守恒定律、角动量 电磁波 (08 小时) 一维波、真空和物质中的电磁波、物质中的吸收和弥散、导波 势与场 (07 小时) 标量势和矢量势、规范变换、库仑规范和洛伦兹规范、延迟势、 Jefimenko 方程、Lienard-Wiechert 势、移动点电荷的场辐射(06 小时)电偶极子辐射和磁偶极子辐射、任意源的辐射、点电荷辐射的功率、辐射反应电动力学和相对论(07 小时)狭义相对论和相对论力学、相对论电动力学、场张量、张量符号中的电动力学。