摘要:近年来,应变传感器已渗透到各个领域。传感器将物理信号转换为电信号的能力在医疗保健中非常重要。但是,获得具有高灵敏度,较大工作范围和低成本的传感器仍然具有挑战性。在此Pa -per中是由双层导电网络制成的可拉伸应变传感器,包括仿生多层石墨烯 - ECOFLEX(MLG- eCoflex)底物和多层石墨烯 - 碳纳米管(MLG -CNT)复合材料上层材料。两层的联合作用导致了良好的性能,其工作范围高达580%,高灵敏度(GF因子(GF MAX)为1517.94)。此外,使用仿生静脉样结构进一步设计了压力传感器,并具有MLG -ECOFLEX/MLG -CNT/MLG -ECOFLEX的多层堆叠,以沿厚度方向获得相对较高的变形。该设备具有高传感性能(灵敏度为0.344 kPa -1),能够监测人体的小运动,例如发声和手势。传感器的良好性能以及简单的Fabri构造程序(翻转)使其具有某些应用的潜在用途,例如人类健康监测和其他人类相互作用的其他领域。
脊椎动物视觉系统的光感受器的发展受复杂的转录调节网络控制。otx2在有丝分裂视网膜祖细胞(RPC)中表达,并控制感光体发生。由OTX2激活的CRX在细胞周期出口后在感光前体中表达。neurod1也存在于可以指定为杆和锥形光感受器亚型中的光感受器前体中。NRL,并调节包括孤儿核受体NR2E3在内的下游杆特异性基因,该基因进一步激活了杆特异性基因并同时抑制了锥体特异性基因。锥形亚型规范也受到诸如THRB和RXRG等几个转录因子的相互作用的调节。这些关键转录因子中的突变是出生时眼部缺陷的原因,例如微感染和遗传感受器疾病,例如Leber先天性症状(LCA),色素性视网膜炎(RP)和盟友性疾病。特别是,许多突变是以常染色体主导方式遗传的,包括CRX和NRL中的大多数错义突变。在这篇综述中,我们描述了与上述转录因子中突变相关的光感受器缺陷的光谱,并总结了当前对致病突变下的分子机制的知识。终于,我们考虑了理解基因型 - 表型相关性和轮廓途径的杰出差距,以实现对治疗策略的未来研究。
摘要钢纤维增强 - 凝结(SFRC)的压缩行为取决于加载速率。这项研究在实验和分析上调查了加载速率对旨在用于预制城市保护家具的SFRC压缩行为的影响。为此,在四个下降高度和四个不同应变速率的准静态测试下,对圆柱体SFRC样品进行了修改的仪器 - 滴射 - 重量测试。分析获得惯性力,并通过实验测量。结果表明,通过增加应变速率,弹性模量,抗压强度和能量耗散能力增加。提出了三种不同的模型,以预测每个机械特性,一个在准静态范围内,而其他模型则与霍普金森分裂压力棒和降低重量影响测试相对应。讨论了SFRC特性获得的实验动力学与静态比率,并将其与本研究和其他研究人员提出的那些进行了比较。三个提出的模型显着改善了预测,在抗压强度,弹性和韧性的模量方面,动态增加因子值。
摘要钢纤维增强 - 凝结(SFRC)的压缩行为取决于加载速率。这项研究在实验和分析上调查了加载速率对旨在用于预制城市保护家具的SFRC压缩行为的影响。为此,在四个下降高度和四个不同应变速率的准静态测试下,对圆柱体SFRC样品进行了修改的仪器 - 滴射 - 重量测试。分析获得惯性力,并通过实验测量。结果表明,通过增加应变速率,弹性模量,抗压强度和能量耗散能力增加。提出了三种不同的模型,以预测每个机械特性,一个在准静态范围内,而其他模型则与霍普金森分裂压力棒和降低重量影响测试相对应。讨论了SFRC特性获得的实验动力学与静态比率,并将其与本研究和其他研究人员提出的那些进行了比较。三个提出的模型显着改善了预测,在抗压强度,弹性和韧性的模量方面,动态增加因子值。
La 3 Ni 2 O 7 、La 4 Ni 3 O 10 、La NiO 3 中 Ni 的价态由原来的 Ni 2.5+ 、Ni 2.67+ 、
硅锗异质结构中的栅极定义量子点已成为量子计算和模拟的有力平台。迄今为止,发展仅限于在单个平面中定义的量子点。在这里,我们提出通过利用具有多个量子阱的异质结构来超越平面系统。我们展示了应变锗双量子阱中栅极定义双量子点的操作,其中两个量子点都与两个储层进行隧道耦合,并发生平行传输。我们分析了与附近栅极的电容耦合,发现两个量子点都聚集在中央柱塞栅极下方。我们提取了它们的位置和大小,由此得出结论,双量子点垂直堆叠在两个量子阱中。我们讨论了多层器件的挑战和机遇,并概述了量子计算和量子模拟中的一些潜在应用。
该手稿由UT-Battelle,LLC部分撰写,根据与美国能源部(DOE)合同DE-AC05- 00OR22725。美国政府保留和出版商,通过接受该文章的出版物,承认美国政府保留了非判定,有偿,不可撤销的,全球范围内的许可,以出版或复制本手稿的已发表形式,或允许其他人这样做,以实现美国政府的目的。DOE将根据DOE公共访问计划(http://energy.gov/downloads/doe-public-access-plan),将公开访问联邦赞助研究结果。
抽象的shot弹枪元基因组测序有可能提供细菌应变水平的分辨率,这对于解决许多临床问题至关重要。尽管可以使用实现应变水平的生物信息学工具,但需要进行彻底的基准测试,以验证其用于较少研究和低生物质微生物组(如上呼吸道中的生物量微生物)的使用。我们分析了先前发表的数据集,这些数据集是从孟加拉国婴儿(微生物群和健康研究)和来自瑞士囊性纤维化儿童的口咽样品的新型数据集的纵向收集的鼻咽样样品。来自细菌培养物的数据用于对菌株3的参数进行基准测试,这是一种用于应变水平分辨率的生物信息学工具。此外,将菌株3的结果与从Strainge和新得出的全基因组测序数据中得出的Metage Notic组件进行了比较。优化分析参数后,我们比较了菌株3的结果与培养金标准方法,并实现了87%(链球菌肺炎链球菌),80%(莫拉氏菌Cartarrhalis),75%,75%(嗜血杆菌)和57%(57%)(57%的葡萄球菌AUREUSNASNASEFRENN),HERISN NASEFREN NASEFREN NASEFREN N.NASEFREN N.NASEFREN N. )和46%(金黄色葡萄球菌),用于260个口咽样品。比较50 s的核心基因组的系统发育树。金黄色葡萄球菌分离株,由菌株3产生的相应标记基因树发现,除三个样品外,所有除三个样品外,都有相似的相似性,表明有足够的应变分辨率。总而言之,菌株3的结果与细菌培养物的数据进行比较表明,尽管仔细优化参数以适合低生物量微生物组时,宿主DNA的含量较高,但呼吸微生物组的应变水平跟踪是可行的。
近年来,卤化物钙钛矿材料已用于制造高性能太阳能电池和发光装置。然而,材料缺陷仍然限制了器件的性能和稳定性。在这里,基于同步加速器的布拉格相干衍射成像用于可视化卤化物钙钛矿微晶体中的纳米级应变场,例如缺陷局部的应变场。尽管 MAPbBr 3 (MA = CH 3 NH 3 + ) 晶体具有很高的光电质量,但其内部存在明显的应变异质性,并且通过分析其局部应变场可以识别出〈100〉和〈110〉刃位错。通过在连续照明下对这些缺陷和应变场进行原位成像,发现了数百纳米范围内剧烈的光诱导位错迁移。此外,通过选择性研究被 X 射线束损坏的晶体,较大的位错密度和增加的纳米级应变与材料降解和使用光致发光显微镜测量评估的显著改变的光电特性相关。这些结果证明了卤化物钙钛矿中扩展缺陷和应变的动态性质,这将对设备性能和操作稳定性产生重要影响。