建筑结构的响应以多尺度运动学为特征,其复杂关系及其对工程荷载响应的影响仍未完全了解,因此需要进一步研究。更确切地说,缺乏能够提供多尺度数据的实验方法仍然是一个关键问题。本文介绍了对定向能量沉积制造的薄壁拉胀金属晶格进行的压溃试验的实验和数值分析。这项工作重点关注发生在 (a) 晶胞微观尺度和 (b) 对应于均质连续体的宏观尺度上的两尺度应变局部化。感兴趣的结构被定义为 2D 拉胀线框的挤压,并允许应用专门用于识别两个考虑尺度上的运动学的改进的数字图像相关方案。具体而言,通过跟踪晶格交叉的变形来研究微观运动学,而从虚拟晶胞角的运动推导出宏观应变。结果表明,晶格的整体弹塑性响应完全由特定位置的塑性铰链形成所驱动,从而导致特征变形模式,并最终导致相邻晶胞的集体行为。配套有限元计算与实验结果非常吻合,因此能够评估建模假设、晶胞几何形状、应变率和几何缺陷对建筑材料整体响应的影响。
摘要:在电信 C 波段中,1550 nm 处的纠缠光子生成至关重要,因为它能够利用已部署的电信基础设施实现长距离量子通信协议。InAs 外延量子点最近已实现在此波长范围内按需生成纠缠光子。然而,由精细结构分裂引起的时间相关状态演化目前将保真度限制在特定的纠缠态。在这里,我们展示了使用微机械压电致动器对 InAs 量子点的精细结构抑制,并演示了在 1550 nm 处生成高度纠缠的光子。在最低精细结构设置下,我们获得了 90.0 ± 2.7% 的最大保真度(同时率为 87.5 ± 3.1%)。对于中等(弱)时间滤波,同时性仍然很高,值接近 80%(50%),分别对应于收集到的光子的 30%(80%)。所提出的精细结构控制为在基于光纤的量子通信协议中利用量子点的纠缠光子开辟了道路。关键词:半导体量子点、纠缠光子、应变调谐、精细结构分裂、量子态层析成像、电信波长、单光子源
Motu Profiler或Short Motus是一种软件工具,可以从分类学组成,代谢活性成员的丰富性以及菌株群体的多样性方面对微生物群落的生产。为此,它维护了单拷贝系统发育标记基因序列的数据库,该数据库被用作参考,简短读取的元基因组和元文字读数被映射为识别和定量微生物分类群。在这里,我们描述了两个基本协议中最常见的MOTU剖面用例。其他支持协议提供有关其安装和深入指南的信息,以调整其设置,以增加或降低检测和量化分类单元的严格度,以及用于自定义输出文件格式。提供了解释分析结果的指南,以及有关独特功能,方法学细节和工具的开发历史的其他信息。©2021作者。Wiley Perigonicals LLC发布的当前协议。
低维铁电体、亚铁电体和反铁电体由于其不同寻常的极性、压电、电热和热电特性而受到迫切的科学关注。层状二维范德华材料(如 CuInP 2 (S,Se) 6 单层、薄膜和纳米薄片)的铁电特性的应变工程和应变控制具有根本性的意义,尤其有望在纳米级非易失性存储器、能量转换和存储、纳米冷却器和传感器等高级应用中得到应用。在这里,我们研究了半导体电极覆盖的亚电介质 CuInP 2 S 6 薄应变膜的极性、压电、电热和热电特性,并揭示了失配应变对这些特性的异常强烈影响。特别是,失配应变的符号及其大小决定了压电、电热和热电响应的复杂行为。与许多其他铁电薄膜相比,应变对这些特性的影响是相反的,即“异常的”,对于这些铁电薄膜,平面外剩余极化、压电、电热和热电响应对于拉伸应变强烈增加,对于压缩应变则减小或消失。
固态自旋缺陷,尤其是具有可能可实现的长相干时间的核自旋,是量子记忆和传感器的诱人候选者。但是,由于其内在四极杆和超细相互作用的变化,它们的当前性能仍然受到限制。我们提出了一个不平衡的回声来克服这一挑战,通过使用第二个自旋来重新调整这些相互作用的变化,同时保留存储在核自旋进化中的量子信息。不平衡的回声可用于探测材料中的温度和应变分布。我们开发了第一个原理方法来预测这些相互作用的变化,并揭示了它们在大温度和应变范围内的相关性。在钻石中大约10 10个核自旋中进行的实验表明,增加了20倍的去态时间,受到其他噪声源的限制。我们进一步表明,与实验中的相比,我们的方法可以重新调整更强的噪声变化。
弹性体是必不可少的材料,因为它们的灵活,可拉伸和弹性性质。但是,构成弹性体的聚合物网络结构通常是不均匀的,从而限制了材料的性能。在这里,具有前所未有的应变性能力的高度可拉伸的弹性体是基于模块组装策略启用的高度均匀网络结构而开发的。弹性体是通过狭窄的分子量分布的星形脂肪族聚酯前体的有效末端链接来合成的。所得的产品显示出高强度(≈26mPa)和显着的可伸缩性(伸展比在突破≈1900%),以及良好的疲劳性耐药性和缺口不敏感性。此外,它显示出超出任何现有软材料的性能的非凡应变性功能(> 2000倍的增长)。这些独特的特性是由于应变诱导的聚合物链在均匀拉伸的网络中的排序,如原位X射线散射分析所揭示的那样。通过实现一个简单的变量sti sti sti sti or sectuator,用于软机器人技术,证明了这种伟大的应变性能力的实用性。
hzμm-3(带有自旋型耦合系数,代表主要的系统不确定性)。我们在具有低应变梯度的单晶散装钻石中使用应变敏感的自旋态干涉仪(N- V)颜色中心。这种量子干涉量学技术对磁场对电子和核自旋浴的不均匀性产生了不敏感性,从而实现了长时间的N- V – Angelement Electemple-Electemple-Electemple-Electement Electem-Election旋转时间和增强的应变敏感性,并增强了该技术的潜在应用,并拓宽了相同的技术的潜在应用。我们在共聚焦扫描激光显微镜上首先证明了应变敏感的测量方案,从而提供了敏感性的定量测量以及三维应变图;第二位于宽阔的成像量子钻石显微镜上。我们的应变 - 显微镜技术可以快速,敏感的钻石材料工程和纳米化表征;以及基于钻石的菌株感测所应用的,例如在钻石砧细胞或嵌入式钻石应力传感器中,或内部通过粒子诱导的核后坐力引起的晶体损伤。
本文重点介绍了微生物组在人类健康中的不断扩展的作用,这表明,由于测序和元基因组学的进步,科学理解的重大转移。曾经主要通过病原体的视角观察,现在将微生物组重新认识为人类生物学不可或缺的一部分,在消化,免疫功能和维生素产生中发挥关键作用。微生物革命将微生物群落改造为健康的重要因素。肠道菌群产生短链脂肪酸,支持肠道健康,免疫调节以及防止炎症性肠病,肥胖和糖尿病等疾病。营养不良或微生物失衡与这些疾病有关,为益生菌,益生元和粪便菌群跨种植园等疗法铺平了道路。本文探讨了个性化的微生物组靶向疗法和人工疗法,以在优化益生菌中的作用。此外,它讨论了肠道轴,其中微生物会影响情绪和认知。尽管面临监管挑战,但基于微生物组的疗法为个性化和高效的医疗保健解决方案提供了潜力。
拓扑物理学彻底改变了材料科学,在从量子到光子系统和声音系统的不同环境中引入了物质的拓扑阶段。在此,我们提出了一个拓扑系统的家族,我们称其为“应变拓扑超材料”,其拓扑合适仅在高阶(应变)坐标转换下被隐藏和揭幕。我们首先表明,规范质量二聚体,该模型可以描述各种设置,例如电路和光学元件,等等属于该家族,在该家族中,应变坐标揭示了在自由边界处的边缘状态的拓扑非平地。随后,我们为主要支持的基塔夫链提供了一种机械类似物,该链支持拟议框架内的固定和自由边界的拓扑边缘状态。因此,我们的发现不仅扩展了拓扑边缘状态的识别方式,而且还促进了各种领域中新型的托托质材料的制造,具有更复杂的量身定制的边界。