一个智能建筑结构动力传感系统用应变计和振动传感器拟合,为结构动力学和乘员/建筑物交互的教师和学生研究创建了全球,非侵入性的建筑监测系统。一支由民用和机械工程学院和学生组成的跨学科团队,在施工期间开发了系统,并建立了一个宝贵的教学和研究平台。
5 传感器系统 ................................................................................................................................................ 12 5.1 传感器系统定义 12 5.2 传感器系统故障模式 14 5.3 应变计 15 5.4 加速度计 17 5.5 速度计 18 5.6 运动参考单元 18 5.7 波雷达 18 5.8 流量计 19 5.9 光纤传感器 19 5.10 数字图像相关 (DIC) 20 5.11 声学传感器 20 5.12 基于光学的泄漏检测系统 22 5.13 温度传感器 22 5.14 无线传感器的局限性 23
预测结构细节疲劳寿命的能力是现代船舶设计中必不可少的要素。经常进行疲劳分析以确保这些结构的安全性和可靠性。然而,很少有人使用全尺寸测试和仪器来验证疲劳分析预测。本报告提供了 SL-7 级集装箱船上出现疲劳开裂的详细案例。使用船舶服役期间获得的舱口角应变计数据,对原始结构设计和后续修改进行了疲劳损伤评估。提供了评估方法和结果以及相关的海况和应变数据。
传感器:机械和光学限位开关、编码器、热电偶、应变计、CCD 摄像机、红外传感器、压电传感器、电容式传感器、扭矩传感器、触觉传感器、陀螺仪和超声波传感器。执行器:直流电机、步进电机、交流电机、气动执行器、液压执行器、记忆形状合金。信号调节:组件互连、放大器、模拟滤波器、调制器和解调器、模拟数字转换、采样保持电路、多路复用器、数字滤波器和惠斯通电桥的软件和硬件实现。控制:H 桥电机控制、PWM 电机控制、步进电机控制、液压和气动执行器的非线性控制、PLC、SCADA 系统、工业现场总线、微处理器控制。
为了进行这项测试,我们建造了一个反作用结构来支撑右侧机翼,ILEF 测试件就安装在机翼上。我们设计了一组模拟机身舱壁的凸耳,直接与内翼根凸耳连接。这些定制凸耳上装有应变计,目的是估算与反作用结构连接处的负载分布。在最终安装到反作用结构上之前,我们在负载框架中对它们进行了单独校准,并施加了垂直和水平负载。本文重点介绍了选择仪表位置和方向的技术、校准程序和数据分析。最后,我们讨论了从这个项目中学到的一些经验教训。
图 36:Vitel v. 2000 s175 熔接机 .......................................................................................... 67 图 37:FBG 的放置 ................................................................................................................ 68 图 38:激光光源的视觉指示 ................................................................................................ 69 图 39:验证 FBG 功能的测试信号。 ................................................................................ 69 图 40:上部应变计附件 ...................................................................................................... 70 图 41:上部和下部应变计 #1 和 #2 ................................................................................ 70 图 42:微测量 P3 列车指示器和记录器以及 LCD 显示屏。 ................ 72 图 43:应力和温度应力随时间的变化 (Vergani、Colombo 和 Libonati 2014) ............................................................................................................. 74 图 44:每个间隔的热曲线 (Vergani、Colombo 和 Libonati 2014) ............................................................................. 75 图 45:涡轮叶片的热成像数据 (Dutton 2004)。 ............................................................................. 75 图 46:测试样本大小 ............................................................................................................. 76 图 47:材料属性样本 12 层 3 x (25 x 250) ............................................................................. 77 图 48:拉力试验机 (MTS Insight 310)。 ........................................................... 78 图 49:25 毫米样品应力与应变图 .............................................................................. 79 图 50:3 个样品的平均弹性模量 .............................................................................. 80 图 51:三点弯曲夹具(ISO 1998) .............................................................................. 82 图 52:进行三点弯曲测试的三个样品 ............................................................................. 84 图 53:弯曲试验前后 ............................................................................................. 84 图 54:三个样品的弯曲与载荷图 ............................................................................. 85 图 55:失效模式 ............................................................................................................. 86 图 56:最外层的弯曲断裂。 ............................................................................................. 87 图 57:第一个拉伸样品顶视图。 ........................................................................... 89 图 58:第二个拉伸样品正面图 .............................................................................. 89 图 59:使用第一个样品进行初步测试以及裂纹扩展的光学测量 91 图 60:用于模拟结冰的塔斯马尼亚橡木轮廓 ................................................................... 92 图 61: 第 2 次拉伸样品顶视图 .............................................................................................. 92 图 62: 控制第 2 次拉伸样品的形状 .............................................................................................. 92 图 63: 第 2 次拉伸样品侧视图 ...................................................................................................... 93 图 64: 拉伸试验的失效模式(标准 2000) ............................................................................. 94 图 65: 弯曲样品的顶视图 ...................................................................................................... 94 图 66: 弯曲样品的前视图 ...................................................................................................... 95 图 67: 上部应变计附件 ............................................................................................................. 95 图 68: 传感器放置的侧视图 ............................................................................................................. 96 图 69: 夹具中的弯曲样品 ............................................................................................................. 96 图 70: 弯曲试验的失效模式(标准 2000) ............................................................................. 97 图 71: 全部三个样品喷涂黑色以准备进行热成像测试 ...................................................................... 98 图 72:热成像测试期间的第一个和第二个拉伸样品 ...................................................................... 99 图 73:810 疲劳机的设置 ...................................................................................................... 99 图 74:热弹应力分析 ............................................................................................................. 100 图 75:拉伸初始测试 ............................................................................................................. 101 图 76:循环中的热成像图片 ............................................................................................. 102 图 77:热成像结果 ............................................................................................................. 103 图 78:视觉裂纹萌生 ............................................................................................................. 103 图 79:第二个拉伸样品的应变数据 ............................................................................................. 10495 图 67:上部应变计附件 ...................................................................................................... 95 图 68:传感器放置侧视图 ...................................................................................................... 96 图 69:夹具中的弯曲样品 ...................................................................................................... 96 图 70:弯曲测试的故障模式(标准 2000) ............................................................................. 97 图 71:为准备进行热成像测试,所有三个样品都喷涂黑色 ............................................................. 98 图 72:热成像测试期间的第一个和第二个拉伸样品 ............................................................. 99 图 73:810 疲劳机的设置 ............................................................................................. 99 图 74:热弹应力分析 ............................................................................................................. 100 图 75:拉伸初始测试 ............................................................................................................. 101 图 76:循环中的热成像图片 ............................................................................................. 102 图 77:热成像结果 ............................................................................................................. 103 图 78:视觉裂纹萌生 ................................................................................................ 103 图 79:第二个拉伸样品的应变数据 .............................................................................. 10495 图 67:上部应变计附件 ...................................................................................................... 95 图 68:传感器放置侧视图 ...................................................................................................... 96 图 69:夹具中的弯曲样品 ...................................................................................................... 96 图 70:弯曲测试的故障模式(标准 2000) ............................................................................. 97 图 71:为准备进行热成像测试,所有三个样品都喷涂黑色 ............................................................. 98 图 72:热成像测试期间的第一个和第二个拉伸样品 ............................................................. 99 图 73:810 疲劳机的设置 ............................................................................................. 99 图 74:热弹应力分析 ............................................................................................................. 100 图 75:拉伸初始测试 ............................................................................................................. 101 图 76:循环中的热成像图片 ............................................................................................. 102 图 77:热成像结果 ............................................................................................................. 103 图 78:视觉裂纹萌生 ................................................................................................ 103 图 79:第二个拉伸样品的应变数据 .............................................................................. 104第二个拉伸样品的应变数据................................................................................104第二个拉伸样品的应变数据................................................................................104
• 在测量方面,开发之初讨论的测量方法(如称重传感器)与环境测试(热、振动和冲击)的限制不兼容。新的解决方案(如带有应变计的拉杆仪表)已经实施,并将在资格认证活动期间使用。这种仪表化的拉杆将以 FM 的形式出售。• 经过大量研究,机械和热裕度确保在任何情况下,Trigger 都能正常触发。• 全聚酰亚胺加热器能够在高温和高密度功率下短时间运行,而不会出现明显性能下降。当应用需要非常短时间使用时,它允许全聚酰亚胺加热器以高于 ECSS 标准中指示的功率密度使用。
公司简介 PCB Piezotronics Inc. 成立于 1967 年,是一家压电石英传感器、加速度计和相关电子设备制造商,用于测量动态压力、力和振动。该公司的独特专长是在这些传感器中整合了微电子信号调节电路,使其更易于使用且更环保。这些 ICP® 传感器广受欢迎,成为公司成功的基础。随后的增长和对设施、机械和设备的稳步投资使产品供应不断扩大。随着压电陶瓷、电气石、电容、压阻和应变计传感技术的增加,测量能力得到了扩展。随后的产品包括工业加速度计、直流加速度计、称重传感器、扭矩传感器、麦克风、压力变送器和校准设备。
我们研究了 transmon 量子比特与经典引力场的相互作用。利用引力红移和 Aharonov-Bohm 相位的一般现象,我们表明纠缠量子态以通用速率失相。引力相移用量子计算噪声通道来表示。我们给出了一种基于改进的相位估计算法的测量协议,该算法与相位漂移呈线性关系,最适合测量从引力通道获取的小相位。此外,我们提出基于量子比特的平台作为精密重力仪和机械应变计的量子传感器,作为该现象实用性的一个例子。我们估计测量局部重力加速度的灵敏度为 δg/g ∼ 10 − 7 。本文表明经典引力对量子计算硬件有着不小的影响,并说明了量子计算硬件如何用于计算以外的目的。虽然我们关注超导量子比特,但我们指出引力相位效应对所有量子平台都具有普遍性。