氧化应激通过各种分子机制损害精子功能,在男性不育中起着关键作用。本综述探讨了过量活性氧 (ROS) 对精子的影响,特别关注脂质过氧化、DNA 碎片化和蛋白质氧化。脂质过氧化会损害精子膜,降低流动性和运动能力。ROS 诱导的 DNA 碎片会损害遗传完整性,可能导致不育和不良的后代结果。蛋白质氧化会改变关键的结构蛋白,损害精子的运动能力和使卵子受精的能力。精子氧化应激的主要来源包括白细胞活性、线粒体功能障碍以及吸烟和污染等环境因素。尽管存在天然的抗氧化防御,但由于修复机制有限,精子特别容易受到伤害。本综述强调了通过抗氧化疗法和生活方式改变进行早期干预的重要性,以减轻氧化应激对男性生育能力的有害影响。进一步的研究对于加强治疗方法和改善生殖结果至关重要。
植物对渗透压的适应性 - 干旱,盐度和其他非生物压力的结果 - 鉴于其对农业生产力和粮食安全的影响,是植物生物学的关键重点(Lim等,2015; Zareen等,2024)。在信号转导网络中,从应力信号的感知到应激响应性基因表达,各种转录因子和应力反应性启动子中的顺式调节元件在植物适应对非生物胁迫的适应中起着关键作用。此外,基因表达的转录后调节是由RNA代谢介导的(Lee等,2006; Kim等,2017; Park等,2024)。转录激活因子和阻遏物之间的平衡对于适当的基因表达和对非生物应激的反应至关重要(Seok等,2022)。该研究主题巩固了在理解渗透压力反应背后的遗传调节机制方面的最新进展,其中包含七项研究探索植物适应性的分子,生化和基因组维度的研究。
氧化应激和全身性炎症是相互联系的过程,可以相互影响和扩大彼此,从而导致各种疾病和健康状况。氧化应激可以激活免疫细胞,例如巨噬细胞,中性粒细胞和单核细胞,以释放促炎分子。这些活化的免疫细胞可以作为防御机制的一部分产生活性氧(ROS)。相反,ROS可以刺激促炎细胞因子的产生,例如白介素6(IL-6)和肿瘤坏死因子-Alpha(TNF- A)。这些细胞因子反过来又可以触发更多ROS的产生,从而在氧化应激和炎症之间形成正反馈环。此循环可以维持慢性炎症,并导致各种器官的组织损伤。氧化应激和全身性炎症重叠的许多危险因素。肥胖症与慢性炎症相关,也与由于代谢活性增加而与氧化应激有关。毫不奇怪,氧化应激与全身性炎症之间的关系是复杂且双向的。他们可以协同促进各种慢性疾病的发展和发展,包括心血管疾病,糖尿病,神经退行性疾病和某些癌症。解决导致氧化应激和炎症的生活方式因素对于维持整体健康和降低这些慢性病的风险至关重要。在深入评论中(Wei等人这个研究主题旨在并强调了我们目前对炎症和氧化应激之间这种双向关系的理解,以及它们在糖尿病和糖尿病和CKD的病理生理学和治疗中的作用。),作者专注于低氧诱导因子-1 A(HIF-1 A)的下游靶标,这是一种感受细胞氧状态的关键转录调节剂,并在肾纤维化的发病机理中起着至关重要的作用。作者详细介绍了与HIF -1 A诱导的调控相关的分子基础,并阐明了潜在的治疗途径,以抵消或改善肾脏纤维化。
casuarina equisetifolia(C。equisetifolia)是一种经济上重要的森林树种,通常在连续的单一养殖中作为沿海保护森林种植。持续种植逐渐影响了增长,并严重限制了C. eetetifolia行业的可持续发展。在这项研究中,我们分析了连续种植对埃母叶梭菌生长的影响,并从元基因组的角度探索了根际土壤微生态机制。结果表明,连续种植导致矮小,较短的根长度和降低的Equisetifolia幼苗根系。宏基因组学分析表明,有10种关键特征微生物,主要是actinoallomurus,actinomadura和分枝杆菌,负责连续种植的Equisetetifolia树木。定量分析表明,随着连续种植的增加,这三个属中的微生物数量显着减少。基因功能分析表明,连续种植导致环境信息处理 - 特征性微生物的信号转导能力减弱,并减少了雌雄同体的雌树叶面。降低了代谢,遗传信息加工恢复和修复的能力,导致微生物的传播减少并减少了雌树梭状芽孢杆菌的根际土壤中的微生物量。这些降低的能力进一步导致土壤微生物量减少,微生物碳和氮,微生物呼吸强度,土壤酶养分循环减少和其次,氨基酸代谢,碳水化合物代谢,聚糖生物合成和代谢,脂质代谢,辅助因子和维生素的代谢均大大降低,从而降低了土壤和代理碳和奈特罗的能力的降低。
超过20%的美国成年人患有精神障碍,其中许多人具有耐药性或继续出现症状。需要其他方法来改善精神保健,包括预防。微生物组的作用已成为精神和身体健康及其相互联系(幸福感)的中心宗旨。在正常条件下,健康的微生物组通过维持肠道和脑屏障完整性来促进宿主体内的体内平衡,从而促进宿主的幸福感。由于微生物组和神经内分泌 - 免疫系统之间的多向串扰,微生物组内的营养不良是免疫介导的系统性和神经炎症的主要驱动力,可以促进疾病进展,并且对疾病的进展且对良好的健康和精神健康有害。在诱发的个体中,免疫失调可以转移到自身免疫性,尤其是在身体或心理触发因素的情况下。慢性应激反应涉及免疫系统,该系统与肠道微生物组密切相关,尤其是在免疫教育过程中。此互连形成微生物群 - 免疫脑轴,并促进心理健康或疾病。在这篇简短的综述中,我们的目的是强调压力,心理健康和肠道微生物组之间的关系,以及营养不良和免疫系统失调的方式可以转移到自身免疫反应以及同时的神经心理学后果,并在微生物群的上下文中伴随着神经心理影响。最后,我们旨在审查基于经验的预防策略和潜在的治疗靶标。
心源性休克 (CS) 是一种高度致命的疾病,是发病率和死亡率的重要原因 (1)。根据美国最近的登记数据,估计每 100,000 例住院患者中约有 408 例因 CS 引起,平均住院死亡率为 37% (2)。无论 CS 患者是否患有糖尿病,都有许多因素导致他们易患高血糖症。炎症反应引起的交感神经刺激、心输出量减少导致的组织灌注不良、应激反应增加、血管加压素给药以及获得性胰岛素抵抗都会导致这种情况下血糖异常 (3)。应激性高血糖 (SIH) 是因急性疾病住院患者的一种暂时性疾病,在疾病消退后可自行缓解 (4)。无论重症患者入院时是否患有糖尿病,SIH 都很常见,并且似乎是疾病严重程度的一个标志 (5)。此外,关于 SIH 与预后的关系也一直存在争议(6,7)。尽管此前已证实应激性高血糖对心血管疾病的预后有害,但目前尚无证据表明应激性高血糖对 CS 患者,尤其是危重患者的预后具有相关性(8)。建议使用根据平均血糖状态进行调整的应激性高血糖比值(SHR)来评估实际血糖水平。先前的一些研究提出,SHR 可作为急性高血糖状态的指标,也可作为危重患者不良结局的预后指标(9-11)。因此,本研究旨在探讨 SIH 对重症监护病房内危重 CS 患者预后的影响,希望临床医生能够警惕危重 CS 患者的应激性高血糖,并能够意识到应激性高血糖可能带来的不良或伴随影响。
糖尿病(DM)是一种慢性疾病,其特征是葡萄糖稳态受损,是由于胰腺B细胞的损失或功能障碍导致1型糖尿病(T1DM)和2型糖尿病(T2DM)的损失或功能障碍。胰腺B细胞在很大程度上依赖其内质网(ER)来克服秘书长对胰岛素生物合成和分泌的需求增加,以应对营养需求,以维持体内的葡萄糖稳态。结果,在循环中营养水平上升后,B细胞可能在ER应力下,以介导由展开的蛋白质反应(UPR)介导的适当的前胰岛素折叠,强调了该过程对正常B -Cell功能保持ER稳态的重要性。然而,过度或长时间增加了新生促硫素进入ER腔内的炎症可能会超过导致胰腺B细胞ER应力的ER能力,然后导致B细胞功能障碍。在哺乳动物细胞(例如B细胞)中,ER应力反应主要由三种规范的ER居民跨膜蛋白:ATF6,IRE1和PERK/PEK调节。这些蛋白质中的每一个分别产生转录因子(分别为ATF4,XBP1S和ATF6),进而激活了ER应力诱导基因的转录。越来越多的证据表明,未解决或失调的ER应力信号通路在B细胞衰竭中起关键作用,导致胰岛素分泌缺陷和糖尿病。In this article we fi rst highlight and summarize recent insights on the role of ER stress and its associated signaling mechanisms on b -cell function and diabetes and second how the ER stress pathways could be targeted in vitro during direct differentiation protocols for generation of hPSC-derived pancreatic b -cells to faithfully phenocopy all features of bona fi de human b -cells for diabetes therapy or drug screening.
子宫内膜异位症是一种雌激素依赖性慢性炎症疾病,会影响生育期女性,并与盆腔疼痛和不孕症有关。当活性氧应激 (ROS) 和抗氧化剂失衡时,就会发生氧化应激 (OS)。OS 是子宫内膜异位症病理生理学的潜在因素。铁诱导的 ROS 可能引发一系列事件,导致子宫内膜异位症的发展和进展。内源性 ROS 与人类子宫内膜异位细胞的细胞增殖增加和 ERK1/2 活化有关。氧化环境会刺激 ERK 和 PI3K/AKT/mTOR 信号通路,从而通过粘附、血管生成和增殖促进子宫内膜异位病变进展。OS 还被认为参与子宫内膜异位症的表观遗传机制。我们总结了最近对氧化应激在子宫内膜异位症发病机制中的作用的认识。
用心肌细胞特异性FOXO1缺失在人类细胞和糖尿病小鼠中进行分析表明,FOXO1直接绑定在KLF5启动子上,并增加了KLF5的表达。具有心肌细胞特异性FOXO1缺失的糖尿病小鼠的心脏KLF5表达较低,并受到DBCM的保护。遗传学,药理增益和KLF5功能方法的丧失和小鼠AAV介导的KLF5递送表明KLF5诱导了DBCM。因此,当救出KLF5表达时,消除了心肌细胞FOXO1在DBCM中的保护作用。同样,组成型心肌细胞特异性KLF5过表达引起心脏功能障碍。klf5通过直接结合NADPH氧化酶(NOX)4启动子和NOX4表达诱导引起氧化应激。这伴随着心脏神经酰胺的积累。药理学或遗传KLF5抑制减轻了超氧化物的形成,可防止神经酰胺的积累和改善糖尿病小鼠的心脏功能。