当我们的身体意识到威胁时,这种本能的反应为我们提供了生存可能需要的快速能量。同时,当我们不受威胁时,我们需要能够降低血糖水平,以确保我们所有的细胞都具有正常运行的必要能量。胰岛素是负责调节葡萄糖的化学信号,并确定我们如何在肝脏和肌肉中存储营养。它在我们的身体持有脂肪分子的方式中也起着重要作用。处于慢性应激状态可以导致我们的身体发展出慢性炎症状态,并与称为胰岛素抵抗的疾病有关。
先兆子痫之前看到的生化和生理变化包括高同型半胱氨酸水平,甘油三酸酯升高和LDL胆固醇水平。先兆子痫的妇女在怀孕前似乎处于氧化应激状态,然后因怀孕而加剧。这些女性通常有其他患心血管和/或肾脏疾病的危险因素,并且在以后的生活中面临这些问题的高风险。这些危险因素包括肥胖,高甘油三酸酯,预先存在的高血压,胰岛素抵抗,糖尿病和代谢综合征。一次怀孕高血压的妇女在另一次怀孕中患高血压的风险更高。
最近已广泛描述了心力衰竭,心力衰竭,心房颤动和其他心血管疾病的发作和表现。在特定的氧化途径和抗氧化剂产生之间的正常平衡和稳态。增加活性氧,例如烟酰胺腺苷二核苷酸磷酸(NADPH)氧化酶,超氧化物歧化酶(SOD),谷胱甘肽过氧化物酶(GPX),脊髓过氧化物酶和其他ROS,因此产生了抗氧化能力和抗氧化能力及其降低的特性。障碍ROS/抗氧化剂平衡的影响是了解心血管疾病的发作,进展和表现中的病理生理影响的关键。在这篇综述中,我们将讨论ROS产生升高在心力衰竭和心房颤动中的病理生理效应,并描述在氧化应激状态升高的情况下,还描述了治疗方面和选择。
内质网 (ER) 应激是一种应激状态,由于某些外源性或内源性因素,错误折叠或未折叠的蛋白质在 ER 腔内积聚。它对癌症中的细胞存活、增殖和转移有重大影响,所有这些都是恶性肿瘤发病机制的方面。ES 应激基因目前已被用作癌症治疗的药物靶点。我们的研究目标是利用 ER 应激相关基因 (ERG) 为肝细胞癌 (HCC) 创建模型。通过筛选显示差异表达和显著存活率的 ERG,建立了预后模型。外部数据集成功验证了该模型的有效性。根据风险评分,将高风险组和低风险组分类。功能分析显示风险组参与了未折叠蛋白反应、DNA 修复和其他差异途径。与低风险患者相比,高风险组的 HCC 患者的预后可能会因这些途径的中断而恶化。重要的是,我们考虑了基因组可用药性并预测了药物。索拉非尼通过 ES 应激机制诱导 HCC 细胞自噬。索拉非尼对高风险患者更敏感。简而言之,我们的模型预测了 HCC 的预后,并为研究其他癌症提供了新的治疗策略。
自闭症谱系障碍(ASD)是一种神经发育障碍的异质群,其特征是社会障碍以及重复性和刻板印象的行为。由于缺乏批准的实验室诊断标记和有效的治疗药物,因此是最具挑战性的疾病之一。因此,迫切需要探索潜在的诊断标记或治疗靶标。胰岛素样生长因子1(IGF-1)是一种神经营养生长因子,可增强脑发育。ASD的学龄前儿童体液中体液中的IGF-1水平低于典型发育中的儿童,这可能是潜在的诊断标记。在与遗传或环境暴露有关的各种ASD模型中,IGF-1治疗可以改善核心症状或病理变化,包括神经元发育,神经细胞存活,突触激发和抑制作用的平衡,神经免疫学和氧化应激状态。2023年3月,IGF-1衍生物被批准为治疗ASD相关的神经发育障碍Rett综合征的第一种药物,以改善基本症状,例如社交交流。因此,在这篇综述中,我们提出了ASD患者中IGF-1水平改变的累积证据以及可能的机制,以及IGF-1治疗改善各种ASD模型中病理生理学的证据。IGF-1有可能成为早期诊断标记和ASD的有效治疗方法。
摘要:糖尿病 (DM) 是全球寿命损失的最主要原因之一,其患病率不断增加。该疾病的特征是多系统功能障碍,其直接原因是胰岛素抵抗 (IR)、胰岛素分泌不足或胰高血糖素分泌过多导致的高血糖。胰岛素是一种高度合成代谢的肽激素,它通过加速细胞葡萄糖摄取以及控制碳水化合物、蛋白质和脂质代谢来调节血糖水平。在占所有糖尿病病例近 90% 的 2 型糖尿病 (T2DM) 病程中,胰岛素反应不足,这种情况被定义为胰岛素抵抗。IR 后遗症包括但不限于高血糖、心血管系统损害、慢性炎症、氧化应激状态失衡和代谢综合征发生。尽管在理解 IR 对多个身体器官造成损害的分子和代谢途径方面取得了实质性进展,但 IR 仍然被认为是一个凶猛的谜。广泛使用的治疗方法的数量正在增加,然而,对精准、安全和有效治疗的需求也在增加。使用 MEDLINE/PubMed、Google Scholar、SCOPUS 和临床试验注册数据库结合关键词和 MeSH 术语进行文献检索,并选择 2021 年 2 月至 2022 年 3 月发表的论文作为最近发表的论文。这篇评论论文旨在提供关键、简洁但全面的见解,了解过去几个月在 IR 治疗方面取得的进展。
摘要 本研究旨在调查表儿茶素(一种存在于绿茶和可可中的类黄酮)在减轻饮食诱导的肥胖大鼠代谢综合征相关并发症方面的心血管作用。16 周龄雄性 Wistar-Kyoto (WKY) 大鼠分别饲喂标准鼠粮或高脂肪高碳水化合物 (HFHC) 饮食,持续 20 周。从 20 周 HFHC 喂养期的第 8 周开始,对一组 WKY 大鼠进行表儿茶素治疗 (5 mg/kg/d)。在整个治疗期间测量体重、食物、水和能量摄入量、血压、心率和葡萄糖耐量。治疗后检查氧化应激和炎症标志物、脂质水平、心脏胶原沉积、心脏电功能、主动脉和肠系膜血管反应性。给 WKY 大鼠喂食 20 周的 HFHC 导致代谢综合征的出现,表现为腹部肥胖、血脂异常、葡萄糖不耐受和血压升高。研究发现,表儿茶素治疗可通过增加血清一氧化氮水平和降低 8-异前列腺素浓度来增强 HFHC 组的氧化应激状态。此外,WKY-HFHC 大鼠的 IL-6 水平降低。HFHC 组的脂质谱有所改善,WKY-HFHC 大鼠的 LDL 胆固醇和 TAG 水平降低,HDL 胆固醇水平升高。然而,表儿茶素无法有效预防 HFHC 喂养大鼠的体重增加、葡萄糖不耐受或高血压。总体而言,本研究结果表明表儿茶素有可能改善肥胖大鼠代谢综合征相关的潜在机制。
références1。Mizushima N,Levine B,Cuervo AM,Klionsky DJ。自噬通过细胞自我消化与疾病作斗争。自然。2008年2月28日; 451(7182):1069–75。 2。 Mizushima N,Komatsu M.自噬:细胞和组织的翻新。 单元格。 2011年11月11日; 147(4):728–41。 3。 Pierrefite-Carle V,Santucci-Darmanin S,Breuil V,Camuzard O,Carle GF。 骨骼中的自噬:保持平衡。 老化Res Rev. 2015年11月; 24(pt b):206-17。 4。 Liu F,Fang F,Yuan H等。 通过抑制成骨细胞末端分化,FIP200缺失对自噬的抑制导致小鼠的骨质减少。 J骨矿工销售J Am Soc Bone Miner Res。 2013年11月; 28(11):2414–30。 5。 Nollet M,Santucci-Darmanin S,Breuil V等。 成骨细胞中的自噬参与矿化和骨稳态。 自噬。 2014年12月18日; 10(11):1965–77。 6。 Zhao Y,Chen G,Zhang W等。 自噬通过HIF-1α/BNIP3信号通路调节缺氧诱导的破骨细胞生成。 J细胞生理。 2012年2月; 227(2):639–48。 7。 DeSelm CJ,Miller BC,Zou W等。 自噬蛋白调节整骨骨吸收的分泌成分。 DEV单元格。 2011年11月15日; 21(5):966–74。 8。 Sànchez-Riera L,Wilson N,Kamalaraj N等。 骨质疏松和脆弱性骨折。 最佳实践临床风湿性。 9。2008年2月28日; 451(7182):1069–75。2。Mizushima N,Komatsu M.自噬:细胞和组织的翻新。单元格。2011年11月11日; 147(4):728–41。3。Pierrefite-Carle V,Santucci-Darmanin S,Breuil V,Camuzard O,Carle GF。骨骼中的自噬:保持平衡。老化Res Rev.2015年11月; 24(pt b):206-17。 4。 Liu F,Fang F,Yuan H等。 通过抑制成骨细胞末端分化,FIP200缺失对自噬的抑制导致小鼠的骨质减少。 J骨矿工销售J Am Soc Bone Miner Res。 2013年11月; 28(11):2414–30。 5。 Nollet M,Santucci-Darmanin S,Breuil V等。 成骨细胞中的自噬参与矿化和骨稳态。 自噬。 2014年12月18日; 10(11):1965–77。 6。 Zhao Y,Chen G,Zhang W等。 自噬通过HIF-1α/BNIP3信号通路调节缺氧诱导的破骨细胞生成。 J细胞生理。 2012年2月; 227(2):639–48。 7。 DeSelm CJ,Miller BC,Zou W等。 自噬蛋白调节整骨骨吸收的分泌成分。 DEV单元格。 2011年11月15日; 21(5):966–74。 8。 Sànchez-Riera L,Wilson N,Kamalaraj N等。 骨质疏松和脆弱性骨折。 最佳实践临床风湿性。 9。2015年11月; 24(pt b):206-17。4。Liu F,Fang F,Yuan H等。 通过抑制成骨细胞末端分化,FIP200缺失对自噬的抑制导致小鼠的骨质减少。 J骨矿工销售J Am Soc Bone Miner Res。 2013年11月; 28(11):2414–30。 5。 Nollet M,Santucci-Darmanin S,Breuil V等。 成骨细胞中的自噬参与矿化和骨稳态。 自噬。 2014年12月18日; 10(11):1965–77。 6。 Zhao Y,Chen G,Zhang W等。 自噬通过HIF-1α/BNIP3信号通路调节缺氧诱导的破骨细胞生成。 J细胞生理。 2012年2月; 227(2):639–48。 7。 DeSelm CJ,Miller BC,Zou W等。 自噬蛋白调节整骨骨吸收的分泌成分。 DEV单元格。 2011年11月15日; 21(5):966–74。 8。 Sànchez-Riera L,Wilson N,Kamalaraj N等。 骨质疏松和脆弱性骨折。 最佳实践临床风湿性。 9。Liu F,Fang F,Yuan H等。通过抑制成骨细胞末端分化,FIP200缺失对自噬的抑制导致小鼠的骨质减少。J骨矿工销售J Am Soc Bone Miner Res。2013年11月; 28(11):2414–30。5。Nollet M,Santucci-Darmanin S,Breuil V等。 成骨细胞中的自噬参与矿化和骨稳态。 自噬。 2014年12月18日; 10(11):1965–77。 6。 Zhao Y,Chen G,Zhang W等。 自噬通过HIF-1α/BNIP3信号通路调节缺氧诱导的破骨细胞生成。 J细胞生理。 2012年2月; 227(2):639–48。 7。 DeSelm CJ,Miller BC,Zou W等。 自噬蛋白调节整骨骨吸收的分泌成分。 DEV单元格。 2011年11月15日; 21(5):966–74。 8。 Sànchez-Riera L,Wilson N,Kamalaraj N等。 骨质疏松和脆弱性骨折。 最佳实践临床风湿性。 9。Nollet M,Santucci-Darmanin S,Breuil V等。成骨细胞中的自噬参与矿化和骨稳态。自噬。2014年12月18日; 10(11):1965–77。6。Zhao Y,Chen G,Zhang W等。 自噬通过HIF-1α/BNIP3信号通路调节缺氧诱导的破骨细胞生成。 J细胞生理。 2012年2月; 227(2):639–48。 7。 DeSelm CJ,Miller BC,Zou W等。 自噬蛋白调节整骨骨吸收的分泌成分。 DEV单元格。 2011年11月15日; 21(5):966–74。 8。 Sànchez-Riera L,Wilson N,Kamalaraj N等。 骨质疏松和脆弱性骨折。 最佳实践临床风湿性。 9。Zhao Y,Chen G,Zhang W等。自噬通过HIF-1α/BNIP3信号通路调节缺氧诱导的破骨细胞生成。J细胞生理。 2012年2月; 227(2):639–48。 7。 DeSelm CJ,Miller BC,Zou W等。 自噬蛋白调节整骨骨吸收的分泌成分。 DEV单元格。 2011年11月15日; 21(5):966–74。 8。 Sànchez-Riera L,Wilson N,Kamalaraj N等。 骨质疏松和脆弱性骨折。 最佳实践临床风湿性。 9。J细胞生理。2012年2月; 227(2):639–48。7。DeSelm CJ,Miller BC,Zou W等。自噬蛋白调节整骨骨吸收的分泌成分。DEV单元格。2011年11月15日; 21(5):966–74。8。Sànchez-Riera L,Wilson N,Kamalaraj N等。 骨质疏松和脆弱性骨折。 最佳实践临床风湿性。 9。Sànchez-Riera L,Wilson N,Kamalaraj N等。骨质疏松和脆弱性骨折。最佳实践临床风湿性。9。2010年12月; 24(6):793–810。Almeida M,O'Brien CA。 骨骼老化的基本生物学:应力反应途径的作用。 J Gerontol A Biol Sci Med Sci。 2013年10月; 68(10):1197–208。 10。 Manolagas SC,Parfitt AM。 旧的对骨骼意味着什么。 趋势内分泌代替tem。 2010 Jun; 21(6):369–74。 11。 Gavali S,Gupta MK,Daswani B,Wani MR,Sirdeshmukh R,Khatkhatay Mi。 雌激素通过促进自噬来增强人类成骨细胞的存活和功能。 Biochim Biophys acta mol Cell Res。 2019年9月; 1866(9):1498–507。 12。 Cheng L,Zhu Y,Ke D,XieD。雌激素活化的自噬对雌激素的抗αsteocolasogenation具有负面影响。 细胞增殖[Internet]。 2020年3月11日[引用2020年10月12日]; 53(4)。 可从:https://www.ncbi.nlm.nih.gov/pmc/articles/pmc7162800/ 13。 pan F,Liu X-G,Guo Y-F等。 自助途径的调节可能会影响中国的地位变化:老年人的证据。 j hum Genet。 2010年7月; 55(7):441–7。 14。 Zhang L,Guo Y-F,Liu Y-Z等。 基于途径的全基因组关联分析确定了自噬途径对超前半径BMD的重要性。 J骨矿工销售J Am Soc Bone Miner Res。 2010年7月; 25(7):1572–80。 15。 Chen K,Yang Y-H,Jiang S-D,Jiang L-S。 随着衰老的衰老,骨细胞自噬的活性降低可能导致老年人群的骨质流失。 组织化学细胞生物。 16。Almeida M,O'Brien CA。骨骼老化的基本生物学:应力反应途径的作用。J Gerontol A Biol Sci Med Sci。2013年10月; 68(10):1197–208。10。Manolagas SC,Parfitt AM。旧的对骨骼意味着什么。趋势内分泌代替tem。2010 Jun; 21(6):369–74。11。Gavali S,Gupta MK,Daswani B,Wani MR,Sirdeshmukh R,Khatkhatay Mi。雌激素通过促进自噬来增强人类成骨细胞的存活和功能。Biochim Biophys acta mol Cell Res。2019年9月; 1866(9):1498–507。12。Cheng L,Zhu Y,Ke D,XieD。雌激素活化的自噬对雌激素的抗αsteocolasogenation具有负面影响。细胞增殖[Internet]。2020年3月11日[引用2020年10月12日]; 53(4)。可从:https://www.ncbi.nlm.nih.gov/pmc/articles/pmc7162800/ 13。pan F,Liu X-G,Guo Y-F等。自助途径的调节可能会影响中国的地位变化:老年人的证据。j hum Genet。2010年7月; 55(7):441–7。14。Zhang L,Guo Y-F,Liu Y-Z等。 基于途径的全基因组关联分析确定了自噬途径对超前半径BMD的重要性。 J骨矿工销售J Am Soc Bone Miner Res。 2010年7月; 25(7):1572–80。 15。 Chen K,Yang Y-H,Jiang S-D,Jiang L-S。 随着衰老的衰老,骨细胞自噬的活性降低可能导致老年人群的骨质流失。 组织化学细胞生物。 16。Zhang L,Guo Y-F,Liu Y-Z等。基于途径的全基因组关联分析确定了自噬途径对超前半径BMD的重要性。J骨矿工销售J Am Soc Bone Miner Res。2010年7月; 25(7):1572–80。15。Chen K,Yang Y-H,Jiang S-D,Jiang L-S。 随着衰老的衰老,骨细胞自噬的活性降低可能导致老年人群的骨质流失。 组织化学细胞生物。 16。Chen K,Yang Y-H,Jiang S-D,Jiang L-S。随着衰老的衰老,骨细胞自噬的活性降低可能导致老年人群的骨质流失。组织化学细胞生物。16。2014年9月; 142(3):285–95。Camuzard O,Santucci-Darmanin S,Breuil V等。成骨细胞谱系中的性别特异性自噬调制:抵消女性骨质流失的关键功能。oncotarget。2016年10月11日; 7(41):66416–28。17。Yang Y,Zheng X,Li B,Jiang S,Jiang L.卵巢切除大鼠中骨细胞自噬的活性增加,及其与氧化应激状态和骨骼丧失的相关性。Biochem Biophys Res Commun。2014年8月15日; 451(1):86–92。18。Luo D,Ren H,Li T,Lian K,LinD。雷帕霉素通过激活骨细胞自噬来降低老年骨质疏松症的严重程度。骨质骨int j stuph Result coop eur发现了美国的骨质骨骨骨质骨。2016年3月; 27(3):1093–101。19。yuan Y,Fang Y,Zhu L等。 造血自噬的恶化与骨质疏松症有关。 老化细胞。 2020; 19(5):E13114。 20。 Kneissel M,Luong-Nguyen N-H,Baptist M等。 依维莫司通过破骨细胞抑制取消骨质流失,骨吸收和组织蛋白酶K的表达。 骨头。 2004年11月; 35(5):1144–56。 21。 Jia D,O'Brien CA,Stewart SA,Manolagas SC,Weinstein RS。 糖皮质激素直接作用于破骨细胞,以增加其寿命并降低骨密度。 内分泌学。 2006年12月; 147(12):5592–9。 22。 Kim H-J,Zhao H,Kitaura H等。 糖皮质激素通过破骨细胞抑制骨形成。 J Clin Invest。 2006年8月; 116(8):2152–60。 23。 24。yuan Y,Fang Y,Zhu L等。造血自噬的恶化与骨质疏松症有关。老化细胞。2020; 19(5):E13114。20。Kneissel M,Luong-Nguyen N-H,Baptist M等。依维莫司通过破骨细胞抑制取消骨质流失,骨吸收和组织蛋白酶K的表达。骨头。2004年11月; 35(5):1144–56。 21。 Jia D,O'Brien CA,Stewart SA,Manolagas SC,Weinstein RS。 糖皮质激素直接作用于破骨细胞,以增加其寿命并降低骨密度。 内分泌学。 2006年12月; 147(12):5592–9。 22。 Kim H-J,Zhao H,Kitaura H等。 糖皮质激素通过破骨细胞抑制骨形成。 J Clin Invest。 2006年8月; 116(8):2152–60。 23。 24。2004年11月; 35(5):1144–56。21。Jia D,O'Brien CA,Stewart SA,Manolagas SC,Weinstein RS。 糖皮质激素直接作用于破骨细胞,以增加其寿命并降低骨密度。 内分泌学。 2006年12月; 147(12):5592–9。 22。 Kim H-J,Zhao H,Kitaura H等。 糖皮质激素通过破骨细胞抑制骨形成。 J Clin Invest。 2006年8月; 116(8):2152–60。 23。 24。Jia D,O'Brien CA,Stewart SA,Manolagas SC,Weinstein RS。糖皮质激素直接作用于破骨细胞,以增加其寿命并降低骨密度。内分泌学。2006年12月; 147(12):5592–9。22。Kim H-J,Zhao H,Kitaura H等。 糖皮质激素通过破骨细胞抑制骨形成。 J Clin Invest。 2006年8月; 116(8):2152–60。 23。 24。Kim H-J,Zhao H,Kitaura H等。糖皮质激素通过破骨细胞抑制骨形成。J Clin Invest。2006年8月; 116(8):2152–60。 23。 24。2006年8月; 116(8):2152–60。23。24。Lin N-Y,Chen C-W,Kagwiria R等。 自噬的灭活可改善糖皮质激素诱导的卵巢切除术引起的骨质损失。 Ann Rheum Dis。 2016; 75(6):1203–10。 fu L,Wu W,Sun X,ZhangP。糖皮质激素通过PI3K/AKT/MTOR信号通路增强了破骨细胞自噬。 Calcif Tissue int。 2020 Jul; 107(1):60–71。Lin N-Y,Chen C-W,Kagwiria R等。自噬的灭活可改善糖皮质激素诱导的卵巢切除术引起的骨质损失。 Ann Rheum Dis。 2016; 75(6):1203–10。 fu L,Wu W,Sun X,ZhangP。糖皮质激素通过PI3K/AKT/MTOR信号通路增强了破骨细胞自噬。 Calcif Tissue int。 2020 Jul; 107(1):60–71。自噬的灭活可改善糖皮质激素诱导的卵巢切除术引起的骨质损失。Ann Rheum Dis。 2016; 75(6):1203–10。 fu L,Wu W,Sun X,ZhangP。糖皮质激素通过PI3K/AKT/MTOR信号通路增强了破骨细胞自噬。 Calcif Tissue int。 2020 Jul; 107(1):60–71。Ann Rheum Dis。2016; 75(6):1203–10。 fu L,Wu W,Sun X,ZhangP。糖皮质激素通过PI3K/AKT/MTOR信号通路增强了破骨细胞自噬。 Calcif Tissue int。 2020 Jul; 107(1):60–71。2016; 75(6):1203–10。fu L,Wu W,Sun X,ZhangP。糖皮质激素通过PI3K/AKT/MTOR信号通路增强了破骨细胞自噬。Calcif Tissue int。2020 Jul; 107(1):60–71。