传统的调查方法可以找到稀有和濒临灭绝的水生物种可能会很耗时,昂贵,对栖息地具有破坏性,并且受现场的身体状况的限制。通过生物体脱落到其环境中的环境DNA(EDNA)的采样可以克服这些局限性,从而最大化保护资源。但是,EDNA检测的最佳空间采样间隔是鲜为人知的。我们开发并评估了EDNA方法,以应用于Simpsonaias ambigua(Salamander Mussel),这是一种联合贻贝,在整个范围内被认为处于危险中。我们开发了一种定量的PCR分析和优化的方法来检测水样中的Ambigua Edna,并实验确定的EDNA脱落和衰减速率。我们使用这些速率填充了先前发布的EDNA传输模型,以估算距离源的最大下游距离(即,实时贻贝的位置)可以在其中检测到EDNA,这是环境相关的源EDNA浓度和水速度的函数。该模型预测,根据源EDNA浓度和水速度,最大检测距离的变化很大。在低EDNA浓度和水速度(分别为1.0拷贝/ml和0.1 m/s)下,仅在源中检测到EDNA,需要在空间密集的EDNA采样上检测到Edna。在较高的EDNA浓度和水速度(分别为5.0拷贝/ml和0.8 m/s)下,可以在下游至少检测到Edna,需要较少的密集采样。根据我们的结果,我们为开发最佳的EDNA采样设计提供了建议,以检测稀有物种或濒危物种。
企划管理部 IoT应用推进部 社会基础设施解决方案本部 金融及企业解决方案本部 网络系统本部 防卫系统本部 IoT平台本部 系统中心 基础技术中心 信息通信本庄工厂 信息通信沼津工厂