抽象的BR 2 /BR - 由于其高电位,溶解性和低成本,是流量电池中有前途的氧化还原夫妇。但是,Br - 和Br 2之间的反应仅涉及单电子转移过程,这限制了其能量密度。在此,研究了一种基于Br - /Br +的新型两电子转移反应,并通过BR +互化来实现石墨,形成溴 - 稀释岩插入化合物(BR – GIC)。与原始的BR - /BR 2氧化还原对相比,石墨中BR插入 /去干扰物的氧化还原电位高0.5V,这有可能大大增加能量密度。与电解质中的Br 2 /Br - 不同,由于石墨中的插入位点的降低,石墨中BR插入的扩散速率随着电荷态的增加而降低,并且石墨结构的完整性对于互相反应很重要。结果,电池可以连续运行300多个循环,其库仑效率超过97%,在30 mA /cm 2时的能量效率约为80%,而与Br - /Br 2相比,能量密度增加了65%。与双电子转移和高度可逆的电化学过程相结合,BR Intercalation Redox夫妇表现出非常有希望的固定能量存储前景。
石杆被称为水质的指标。他们在自来水,冰川融化和大型无亲养湖中的存在正在迅速下降。在美国,美国与美国合作伙伴鱼类和野生动植物服务通过制定国家野生动植物行动计划(Swaps)来保护栖息地和野生动植物。植物和野生动植物物种经常作为最大保护需求(SGCN)的物种进入这些掉期。阿肯色州目前将九种石蝇物种列为SGCN,并通过掉期赠款为其提供了研究。但是,这些九种最初是根据少数论文的少量数据选择的。使用博物馆标本数据进行更全面的评估,以评估采样的完整性,物种的相对稀有性和流行性,分布时间变化以及阿肯色州物种的保护状况。在此,我们发布了一份数据文件和初步数据集,该数据集由标本数据组成,主要来自伊利诺伊州自然历史调查昆虫收藏,加拿大国家收藏,西肯塔基大学,P。N。Hogan个人收藏以及现有文献来源。这些数据是
海洋海绵(门孔)代表了许多领域的底栖生物量和多样性的重要组成部分,并提供了几种重要的生态系统功能,例如庇护所,食物或调节底物沉降。商业角质海绵自古以来就被收获并用作沐浴海绵:腓尼基人和埃及人过去曾在海岸沿岸收集滞留的海绵,而海绵渔业的千年历史则扎根于古希腊文明。使用传统的捕鱼方法,渔民利用一块重石作为镇流器,轻松到达海底和一个净篮子来收集海绵。幸运的是,可以假定在最佳特异性条件下定居相似的生物型的海绵能力。它们的分散率升高,底栖群落中的特殊丰度以及对营养化合物的循环速率的影响,同时确保天然库存保存
摘要。—菊法鱼(Crawfish Frog(Lithobates aylolatus)的占用率在其历史范围的大部分范围内下降了35%,这主要是由于栖息地转换为农业。在美国路易斯安那州,大多数记录日期是1970年代之前的日期,最近仅在几个地点记录了该物种。这项研究旨在评估路易斯安那州乳杆菌的当前分布和状态,并确定该物种的气候和栖息地关联。在2019年春季,我们沿着可能合适的栖息地的地区沿着历史地点附近的道路进行了夜间呼叫调查。尽管付出了巨大的努力,但我们没有遇到任何人。为了确定随后的调查的合适区域,我们使用1990年的路易斯安那州,德克萨斯州和俄克拉荷马州的本地信息开发了一种生态利基模型,以及生物气候,土地覆盖和土壤水文变量。在12个教区中,只有六个具有历史记录的乳乳杆菌记录,预计对该物种具有可观的适合性领域。我们根据模型建立了五个新路线,并在2020年和2021年期间对它们进行了调查。我们还在2020年还部署了12个自动录音机和2021年的7个。尽管有这些额外的努力,但未发现乳杆菌,表明该物种在路易斯安那州可能被灭绝或极为罕见。尽管如此,我们的研究确定了该物种南部范围内该物种的气候和栖息地关联,以及可以评估潜在重新引入地点的区域。
lupeol是存在于几种植物中的一种天然存在的五囊三萜类化合物,被归因于具有抗癌,抗寄生虫和抗炎特性。由于其已知的抗疾病和免疫调节活性,对硅酸盐进行了一项有关其潜在的相互作用与SARS-COV-2的各种表面蛋白的相互作用,SARS-COV-2是导致COVID-19的冠状病毒。分子对接表明,它与SARS-COV-2-2蛋白有效结合,这些蛋白对病毒的生命周期,结构完整性和毒力至关重要。它在主要蛋白酶,核蛋白酶磷蛋白,木瓜蛋白酶样蛋白酶,RNA依赖性RNA聚合酶和峰值糖蛋白上显示出高结合亲和力。还分析了其对免疫信号通路至关重要的各种蛋白质的可能靶标,以及其细胞吸收,分布,排泄,代谢和毒性。这些发现表明,卢底酚是一种潜在的候选药物作为针对冠状病毒和免疫相关疾病的抗病毒药物。
1)如果电源不是220VAC,则它是被动输出2)可以选择3种颜色:珍珠白色(玻璃+框架+底壳)(默认底壳)(默认)(默认)空间银:真空银色镀玻璃+银色框架+黑色底壳+黑色底壳(定制)晶体黑色:黑色(玻璃+底壳+底壳)(玻璃+底壳)(定制)
a 纽约州石溪大学生物医学工程系,石溪,纽约州 11794;b 纽约州石溪大学劳弗物理与定量生物学中心,石溪,纽约州 11794;c 纽约州石溪大学物理与天文学系,石溪,纽约州 11794;d 马萨诸塞州总医院和哈佛医学院 Athinoula A. Martinos 生物医学成像中心,马萨诸塞州查尔斯顿 02129;e 纽约州石溪大学计算机科学系,石溪,纽约州 11794;f 纽约州石溪大学应用数学与统计学系,石溪,纽约州 11794;g 美国国立卫生研究院/国家酒精滥用与酒精中毒研究所代谢控制实验室,马里兰州罗克维尔 20852;h 牛津大学生理学、解剖学与遗传学系,牛津 OX1 3PT,英国
1 哈佛大学分子与细胞生物学系,52 Oxford St.,剑桥,MA 02138,美国 2 高能物理部,史密森天体物理观测台,哈佛与史密森天体物理中心,60 Garden St,剑桥,MA 02138,美国 3 LRL-CAT,礼来公司,先进光子源,阿贡国家实验室,9700 S. Cass Avenue,莱蒙特,伊利诺伊州,60439,美国 4 钻石光源,哈威尔科学与创新园区,迪德科特,OX11 0DE,英国 5 哈佛大学纳米系统中心,11 Oxford St,LISE G40,剑桥,MA 02138,美国 6 蒙大拿州立大学地球科学系,226 Traphagen Hall,PO Box 173480,博兹曼,MT 59717,美国 7 PLEX 公司,275 Martine St.,美国马萨诸塞州福尔里弗 02723 100 室 通讯作者:Julie EM McGeoch;电子邮件:Julie.mcgeoch@cfa.harvard.edu
Ishii Hirohisa * 1 Kuramoto Hirohisa * 2 Koh Ishii Hirohisa Kuramoto Tauchi Takushi * 2 Yamamoto Yusuke * 3 Hiroyuki Tauchi Yusuke Yamamoto Wakana Tomohiro * 3 Yoshimura Jin * 3 Tomohiro Wakana Hitoshi Yoshimura
9. Xu, Z.; Li, H.*; Liu, Y.; Wang, K.; Wang, H.; Ge, M.; Xie, J.; Li, J.; Wen, Z.; Pan, H.; Qu, S.; Liu,