15 17,2 2,0 10 6 KB-017-P20 15 18,0 1,5 13 9 KB-018-P15 15 18,0 2,5 10 5 KB-018-P25 15 19,0 1,5 13 9 KB-019-P15 15 20,0 1,5 13 8 KB-020-P15 15 20,0 2,0 13 8 KB-020-P20 15 21,3 2,0 15 10 KB-021-P20 15 21,3 2,5 15 10 KB-021-P25 20 22,0 1,5 12 7 KB-022-P15 20 22,0 2,0 15 10 KB-022-P20 20 23,0 1,5 12 8 KB-023-P15 20 23,0 2,0 13 7 KB-023-P20 20 25,0 2,0 15 9 KB-025-P20 20 25,0 2,5 15 9 KB-025-P25 20 25,0 3,0 18 12 KB-025-P30 20 25,4 1,5 14 8 KB-025-P15 20 26,9 2,0 17 11 KB-026-P20 20 26,9 2,5 18 11 KB-026-P25 20 26,9 3,0 18 11 KB-026-P30 25 28,0 1,5 15 9 KB-028-P15 25 28,0 2,0 15 8 KB-028-P20 25 28,0 2,5 16 9 KB-028-P25 25 29,0 1,5 17 11 KB-029-P15 25 29,0 2,0 17 10 KB-029-P20 25 30,0 1,5 17 10 KB-030-P15 25 30,0 2,0 18 11 KB-030-P20 25 30,0 2,5 18 11 KB-030-P25 25 30,0 3,0 18 11 KB-030-P30 25 33,7 2,0 20 12 KB-033-P20 25 33,7 2,5 20 12 KB-033-P25 25 33,7 4,0 23 14 KB-033-P40 32 34,0 1,5 14 7 KB-034-P15 32 35,0 1,5 14 6 KB-035-P15 32 35,0 2,0 15 7 KB-035-P20 32 35,0 3,0 15 7 KB-035-P30 32 36,0 2,0 15 7 KB-036-P20 维特沃热诺 09.02.2025 01:25 1/7
nitride(Si 3 N 4)已成为综合光子学的广泛利用材料[1]。在近红外且可见的范围中,其低损失和转移良好的新兴应用,例如生物传感[2],电信[3]和量子计算[4]。此外,Si 3 N 4与互补的金属 - 氧化物 - 氧化型(CMOS)织物兼容,从而实现了大规模的制造。然而,由于模式区域之间的错误匹配,高索引对比度SI 3 N 4波导和光纤维之间的光偶联仍然具有挑战性。光栅耦合器通常用于促进片上波导和光纤维之间光的垂直耦合。具有蚀刻到引导层的周期性结构,在波导中传播的光可以向上衍射朝向光学纤维,反之亦然。与使用边缘耦合器的水平耦合相比,垂直
目前,美国国家航空航天局 (NASA) 的许多电子系统正在考虑使用高可靠性版本的商用现货区域阵列封装 (COTS AAP) 技术。尽管许多此类先进电子封装通常在封装内使用底部填充材料,包括倒装芯片 (FC) 芯片下方;但印刷电路板 (PCB) 级别可能还需要全部或部分角落底部填充材料,以提高组装可靠性,特别是在机械和疲劳负载下。由于 NASA 对材料和可靠性有严格的要求,因此对于使用底部填充材料的测试验证指南极其有限。为了准备开发测试矩阵和实施,我们对文献和当前实践以及可靠性问题进行了调查。
用于倒装芯片和板载BGA的创新型底部填充膜和浆料 先进电子封装保护 AI Technology的底部填充材料采用分子结构设计,具有无与伦比的能力,可为芯片和元件焊接互连提供压缩应力,同时在热循环和操作过程中吸收平面剪切应力。设计的分子结构不仅具有高Tg,而且还具有出色的防潮性能和低吸湿性,可实现MSL 1级元件级可靠性。这些功能是通过非常规聚合物工程和设计实现的。AI Technology先进的微电子保护产品已在军用和先进商用设备上证明了其性能。创新的底部填充解决方案:
钻石填充底部填充材料:SMT 158D8(纽约州奥尔巴尼)2021 年 1 月 18 日 YINCAE 很高兴地宣布,我们开发了 SMT 158D8,这是一种毛细管状、流动速度快的高导热底部填充材料,也是一种易于返工的液体环氧树脂。SMT 158D8 是世界上第一个(也是唯一一个)商用钻石填充底部填充材料。SMT 158D8 的导热系数为 >6 W/mK,可轻松流入小间隙,不会发生相分离,具有高耐盐湿性和出色的附着力。此外,与使用焊膏相比,SMT 158D8 跌落测试的性能提高了两个数量级。SMT 158D8 的亮点是它能够将 CPU (POP) 温度降低 10°C。该材料可用作倒装芯片、芯片级封装、球栅阵列器件、封装上封装和焊盘栅格阵列应用的底部填充材料。它还适用于各种先进封装中的裸芯片保护,例如存储卡、芯片载体、混合电路和多芯片模块。它专为高产量和以工艺速度和散热为主要考虑因素的环境而设计。如需了解有关 YINCAE 的 SMT 158D8 底部填充材料的更多信息,或要了解有关 YINCAE 产品系列的更多信息,请发送电子邮件至:info@yincae.com。您也可以访问我们的网站:www.yincae.com 了解更多信息
____________________________________________________________________ 据我们所知,本文所含信息真实准确,但由于使用条件超出我们的控制范围,因此所有建议或建议均不作保证。本文所述产品的适销性或适用性不作任何默示保证。提交此信息时,不承担任何责任,也不明示或暗示授予任何现有待批专利、专利申请或商标的许可或其他权利。遵守所有法规和专利是用户的责任。AZ、AZ 徽标和 BARLi 是 Clariant AG 的注册商标。(*) 首页 SEM 由 J. Johnson、ST Microelectronics、Phoenix AZ 提供
米歇拉·德·西蒙妮(Michela de Simone),意大利 - 意大利意大利,意大利,米歇尔(Michela.desimone)ich.desimone8@gmail.com anna di cosmo,naples federico ii,意大利大学,anna.dicosmo@dicosmo@dicosmo@unina@unina.it意大利,ornella.nonnis@isprambiente.it gianluca franceschini,ispra,意大利 - 意大利环境保护与研究所,意大利,gianluca.franceschini@isprambiente.it barbara catalano 0000-0002-9022-5806 Paolo Tomassetti,Ispra-意大利 - 意大利环境保护与研究所,意大利,Paolo.tomassetti@isprambiente.it laura ciaralli ispra,Ispra,意大利 - 意大利 - 意大利 - 意大利环境保护研究所意大利意大利意大利意大利,意大利,eleonoramonfardini94@gmail.com benedetta trabucco,ISPRA-意大利环境保护与研究所,意大利,意大利,benedetta.trabucco@isprambiente.it
在某些应用中,无流动底部填充比毛细管流动底部填充更受青睐,因为其独特的特性和优势与制造工艺和性能要求非常吻合。在产量和效率至关重要的大批量生产环境中,无流动底部填充可以通过减少工艺步骤和处理操作来简化制造工艺。在高度自动化的装配线上,这可以节省大量时间和成本。在空间非常宝贵的地方,例如在移动设备、可穿戴电子产品和其他紧凑型消费电子产品中,能够通过一个步骤应用底部填充是非常有利的,因为减少的处理和加工还可以帮助保持小而精密的组件的完整性。对于 BGA 和芯片级封装组件,无流动底部填充也是一个优势。它能够在同一步骤中流动和固化,确保所有细间距连接都得到正确封装,而无需额外的工艺复杂性。
Parameter Symbol Conditions Min Typ Max Units Supply VoltageVdd1.621.81.98VLow Frequency RolloffLFRO-3dB relative to 1 kHz-20-HzHigh Frequency Flatness+3dB relative to 1 kHz-15-kHzResonant Frequency PeakFresFree Field response-29-kHzLatency@ 4kHz, Fclock = 2.4 MHz-3-μsDC OffsetSEL = 0 / SEL = 1: Fullscale = ±100%-0.0 / -0.39-%DirectivityOmnidirectionalPolarityIncreasing sound pressureIncreasing density of 1'sData Format½ Cycle PDMSensitivity DropVdd(min) ≤ Vdd ≤ Vdd(max)--±0.25dBClock Input CapacitanceCin-8-pFData Output CapacitanceCout-60-pFData Output LoadCload--110pFSELECT (high)Vdd-0.2-VddVSELECT (low)-0.3-0.2VShort Circuit CurrentIscGrounded DATA pin1-20mAFall-asleep Time3,4Fclock < 1kHz--10msWake-up Time3,5Fclock ≥ 380kHz--20msStartup Time3Powered Down →活动,最终值的1dB不超出20mstime到第一个数据位,从有效的VDD和CLK到第一个逻辑位在数据线上驱动到第一个逻辑位。输出为直到第一个数据位为止。初始输出位代表静音音频。音频数据将遵循启动时间。23MMSMODE-CHANGE TIME3,6LOW POWER MODE模式⇔快速模式 - 20ms