摘要 在 2020 年 3 月 20 日宣布 COVID-19 大流行后的几个月内,世界各地开始检测到新的、传染性更强的 SARS-CoV-2 变体。由于国际旅行是疾病传播的主要原因,迅速识别进入一个国家的变体至关重要。在本研究中,我们利用基于废水的流行病学 (WBE) 来监测英国国际航空旅客入境 COVID-19 隔离设施产生的废水中变体的存在。具体来说,我们开发了多重逆转录定量 PCR (RT-qPCR) 检测方法,用于识别与 Beta (K417N)、Gamma (K417T)、Delta (156/157DEL) 和 Kappa (E154K) 变体相关的定义突变,这些变体在采样时(2021 年 4 月至 7 月)在全球流行。这些检测方法偶尔检测到与 Beta、Gamma 和 Kappa 变体相关的突变,占所有样本的 0.7%、2.3% 和 0.4%。在 13.3% 的样本中发现了 Delta 变体,峰值检测率和浓度在 2021 年 5 月 (24%) 达到峰值,与该变体在英国出现同时发生。RT-qPCR 结果与测序结果相关性良好,表明基于 PCR 的检测可以很好地预测变体的存在;尽管探针结合不充分可能导致假阳性或阴性结果。我们的研究结果表明,WBE 结合 RT-qPCR 可用作快速初步评估,以识别国际边界和大规模隔离设施中新出现的变体。
摘要:减少能源消耗、碳足迹、设备尺寸和成本是即将出台的能源密集型行业路线图的关键目标。从这个意义上讲,废热回收等解决方案可以复制到不同的行业(例如陶瓷、混凝土、玻璃、钢铁、铝、纸浆和造纸),因此受到大力推广。在这方面,潜热储能 (TES) 作为一种创新技术解决方案,通过回收和储存工业废热来提高整个系统的效率。为此,通过决策支持系统 (DSS) 协助选择相变材料 (PCM)。基于最相关系统参数之间的相关性,开发了一种基于 MATLAB ® 模型的简化工具,以证明跨部门方法的可行性。研究工作进行了参数分析,以评估 PCM-TES 解决方案在不同工作条件和行业下的技术经济性能。此外,还进行了多标准评估,比较了金属合金和无机水合 PCM 盐的工具输出。总体而言,无机 PCM 表现出更高的净经济和能源节约(高达 25,000 欧元/年;480 兆瓦时/年),而金属合金则具有良好的结果、更短的周期和具有竞争力的经济比;其商业发展仍然有限。
1 引言随着全球经济的快速发展,人们对资源的需求急剧增加,浅部矿产资源严重匮乏,矿产资源逐渐向深部开发迈进,据统计,我国部分矿山开采深度已超过1 km[1,2],深部资源开发将成为常态[3]。深部岩石爆破对施工环境的影响也引起了人们的重视,特别是爆破地震波冲击引起的爆破震动,往往会对周边环境造成影响[4–7]。根据我国《爆破安全规程》[8],爆破施工作业应在安全允许距离外进行,安全允许距离是根据爆破振动速度和地层条件确定的。随着现代化进程的加快,提高土地利用率尤为重要,确定正确的安全允许距离不仅有利于周边环境的安全
由于地面条件恶劣,软质海洋粘土沉积物下为坚硬的基岩,斯堪的纳维亚半岛的许多地下项目都面临着隧道进水沉降风险的挑战。这些充满粘土的洼地中的孔隙压力降低会对附近的建筑物造成损坏,这是奥斯陆基础设施建设的主要风险之一。本文介绍了奥斯陆地区 44 条隧道的大量数据库,这些隧道建于 1975 年至 2020 年之间。数据包括开挖前注浆后测得的进水量、孔隙压力降低、开挖前注浆工作量和地质参数。对数据进行分析以确定关键参数之间的趋势和关系,例如给定进水率的预期孔隙压力降低和获得给定注浆区水力传导率所需的注浆工作量。分析表明,在未来的项目中,有必要将重点放在孔隙压力监测上,而不是进水,以降低不可接受的孔隙压力降低的风险。提出了如何优化开挖前灌浆的监测和跟踪以确保满足所需的防水性的建议。
如今,隧道掘进机 (TBM) 因其开挖速度高、对围岩影响小、安全标准高而在世界各地被广泛使用。岩体可钻孔性被视为评估 TBM 在节理岩体中性能的主要参数之一。可钻孔性是反映岩体和切削刀具之间相互作用的参数。本文旨在利用为利用从伊朗克尔曼输水隧道项目收集的数据(TBM 操作和地质参数)而准备的数据库来说明节理几何参数对可钻孔性的影响。为此,首先研究了影响可钻孔性的节理参数(方向、间距、持久性)。然后,使用总破裂因子(Bruland)和持久性分类来研究所有三个参数对可钻孔性的影响。结果表明,通过提高节理持久性也可以提高可钻孔性。此外,随着节理持久性的增加,破裂因子(K s-total )对可钻性的影响也随之增大。本文还根据对数据库的分析,提出了一个新参数,称为“岩石节理指数”(RJI)。基于 RJI 估算的可钻性值与实际钻进速度具有很好的一致性。
与当前的技术状态相比,美国能源部(DOE)提议向普渡大学提供联邦资金,以开发具有增强稳定性和电子特性的太阳能钙钛矿细胞。普渡大学将专注于将半导体配体(即与金属原子结合的分子)整合到细胞中。与技术的当前状态相比,配体将覆盖太阳能电池并提高设备内能量交换的能量转换效率和控制能量交换的方面,从而提高稳定性和能源效率。与项目相关的活动包括数据分析,计算机建模,概念设计工作,材料合成,表征,太阳能电池/微型模块制造和性能测试。
我们利用锡罗斯岛(希腊基克拉泽斯群岛)出露的俯冲相关岩石的结构和微观结构观测结果,对深俯冲界面的长度尺度和异质性类型提供约束,可能对间歇性震颤和慢滑移有影响。我们选择了三个锡罗斯地区,它们代表了俯冲界面剪切带内不同的海洋原岩和变形条件,包括:(1)海洋地壳向榴辉岩相的顺向俯冲;(2)海洋地壳从榴辉岩经蓝片岩-绿片岩相折返;(3)混合镁铁质地壳和沉积物从榴辉岩经蓝片岩-绿片岩相折返。这三个地方都保留了流变学异质性,反映了俯冲原岩中原始岩性、地球化学和/或结构变化的变质,并以粘性基质内的脆性荚状物和透镜状物的形式出现。微观结构观察表明,基质岩性(蓝片岩和富含石英的变质沉积物)由分布式幂律粘性流变形,并由多个矿物相中的位错蠕变所适应。我们估计整体剪切带粘度范围从~10 18 到 10 20 Pa-s,取决于沉积物与(部分榴辉岩化的)海洋地壳的相对比例。基质内的榴辉岩和粗粒蓝片岩异质性保留了多代扩张剪切断裂
服装业的过度生产,从而限制了该行业的可持续性。时装业每年生产 1500 亿件服装,[1] 其中 30% 从未售出,超过 50% 在不到一年的时间内就被丢弃,[2] 造成估计 5000 亿美元的价值损失。[3] 全世界每年产生约 9200 万吨纺织废料,[4] 其中 85% 最终被填埋(约占垃圾填埋场空间的 5%)或焚烧(而大多数这些材料可以重复使用)。[5–7] 由于生产过剩和消费过度,这些数字每年都在增长,导致资源浪费、环境污染[8] 以及河流、海洋和饮用水中的微纤维对人类健康构成潜在威胁,这些微纤维可能通过食物链进行生物累积。 [9–15] 尽管纺织废弃物产量很高,但其回收率仍然很低:2015 年只有 15% 的纺织废弃物被收集和分类回收,在此过程中损失了 110 万吨。[16] 大多数回收的纺织品都会流向其他行业,并被降级为价值较低的应用。[17]
»35,000 m 2 ----»72,200 m 2 ----»10,000 m 2 -----»7,200 m 2 ----中国广东梅州厂»18,000 m 2 ----------------------------------------------------
1) 坎顿附近的“蛇形”路堑,一种塑性折叠、弱叶理的大理岩,具有薄而持久的类似折叠的层,主要由微斜长石组成;2) 古弗内尔附近的岩岛路堑,暴露出格伦维尔大理岩中波茨坦砂岩的空腔填充物,一种粗面岩(?)侵入大理岩的杏仁状堤坝,片麻岩和片岩中的复杂角砾岩化,众多剪切带和黄铁矿矿化;3) 和 4) 布拉西角附近的海德“晶石”,将强调次要结构和主要结构之间的关系,并讨论晶石起源的有争议的问题;5) 海尔斯伯勒路堑,暴露出塑性变形的大理岩,其中含有显然来自堤坝的辉长岩块; 6) 石英黑云母 - 长石片麻岩中的 Poplar Hill 混合岩路堑,是该地区 Grenville 最广泛的变质沉积岩类型之一;7) Edwards 路堑,是著名的透辉石、方解石、金云母、钾长石和磷灰石矿物收集地。