II。 引言电气化飞机热管理系统(TMS)设计已成为最近考虑的几种不同建筑和热管理技术的最新感兴趣的主题[1-3]。 这些飞机使用电力总成产生大部分或全部推进动力,因此它们比传统的燃油燃烧飞机上的电力系统产生的废热量多数。 此外,与喷气发动机推进的燃烧过程相比,热量更难拒绝,其中大部分热量通过废气排出。 对于电气推进,热量通常是由电动机绕组,电源设备,电池电池和其他与涡轮机发动机本质上耦合到自由式空气并不那么内在耦合的组件产生的。 因此,设计可以拒绝这种热量的TM的挑战是一个重大的挑战,而无需通过额外的TMS重量,阻力和功耗否定电气化的好处。 许多先前的研究都大小和建模为电气化飞机TMS,但很少考虑系统的故障模式和组件所需的冗余。 此外,许多研究不会在当前飞机获得飞行的环境中进行TMS的规模或评估性能。 本研究旨在量化体重,II。引言电气化飞机热管理系统(TMS)设计已成为最近考虑的几种不同建筑和热管理技术的最新感兴趣的主题[1-3]。这些飞机使用电力总成产生大部分或全部推进动力,因此它们比传统的燃油燃烧飞机上的电力系统产生的废热量多数。此外,与喷气发动机推进的燃烧过程相比,热量更难拒绝,其中大部分热量通过废气排出。对于电气推进,热量通常是由电动机绕组,电源设备,电池电池和其他与涡轮机发动机本质上耦合到自由式空气并不那么内在耦合的组件产生的。因此,设计可以拒绝这种热量的TM的挑战是一个重大的挑战,而无需通过额外的TMS重量,阻力和功耗否定电气化的好处。许多先前的研究都大小和建模为电气化飞机TMS,但很少考虑系统的故障模式和组件所需的冗余。此外,许多研究不会在当前飞机获得飞行的环境中进行TMS的规模或评估性能。本研究旨在量化体重,
无处可藏。“我知道这会让所有潜艇爱好者和隐形装置爱好者大吃一惊,但太空中没有隐形。太瓦级飞船的废气或废热可以从半人马座阿尔法星通过原始的被动传感器探测到。航天飞机弱得多的主发动机可以在冥王星轨道之外探测到。航天飞机的机动推进器可以在小行星带中看到。甚至一艘使用离子驱动器以微不足道的毫重力推力的微型飞船也可以在一个天文单位处被发现。截至 2013 年,旅行者 1 号太空探测器距离地球约 180 亿公里,其无线电信号只有可怜的 20 瓦(或与冰箱中的灯泡一样暗)。但尽管它很微弱,但绿岸望远镜可以在一秒钟内从背景噪音中分辨出来。即使是生命支持系统的废热也很容易被检测到。” — Winchell Chung,原子火箭/Rho 项目网站,2013 年。
在目前的研究中,我们开发了一种球床热能存储 (PBTES) 系统来利用发动机废气产生的废能。开发的 PBTES 与电力测功机耦合的固定式柴油发动机集成在一起,用于实验研究。比较了集成和未集成 PBTES 系统的发动机性能。在各种负载条件下,在充电过程中,60-75% 的能量可以存储在制造的系统中。研究发现,考虑到充电过程,使用该存储系统可以节省近 11-15% 的发动机燃料能量。PBTES 的热回收/排放表明可以节省 6-8.5% 的燃料一次能源。系统组合(发动机 + PBTES)效率在不同负载条件下变化范围为 11-38%。当施加 3 kW 负载时,可获得最高的能量节省,为 3.32%。开发的系统可轻松用于家庭或工业用途的空间加热或热流体需求。关键词:热能储存系统,球床,废热回收,
摘要:已经开发了一种新型的压缩空气存储(CAES)系统,该系统与基于其进食水热系统的煤炭功率厂创新。在混合设计中,将CAES系统的压缩热转移到煤炭发电厂的饲料中,并在膨胀机被从煤炭发电厂采集的饲料加热之前被压缩空气。此外,扩张器的废气被用来加热煤炭发电厂的部分进食水。通过建议的集成,可以消除常规CAES系统的热量储能设备,并且可以改善CAES系统的性能。基于350兆瓦的超临界煤炭发电厂,对拟议的概念进行了热力学评估,结果表明,新CAES系统的往返效率和往返效率可以分别达到64.08%和70.01%。此外,还进行了灵敏度分析,以检查环境温度,空中压力,扩张器入口温度和煤炭功率负载对CAES系统性能的影响。上述工作证明,在各种条件下,新颖的设计有效,为CAES技术的发展提供了重要的见解。
doi:https://dx.doi.org/10.30919/es1164热电模块:在建筑环境中的应用和机遇,从生物量,市政废物和其他来源的可持续能源产生环境中,其他来源Harold E. Rebellon,1,1,1,#oscar F. Posard henao,1,1,1,1,#ELELS I.亨利·A·科罗拉多1,*摘要在不断搜索替代能源的摘要中,热电模块已成为发电的重要技术。这项研究对其在建筑环境中的应用进行了全面审查,该领域变得越来越重要。尽管其效率较低,但热电模块对于捕获和转化废气分解为有价值的能源非常有用。该论文分为五类:发电,可持续建筑实践,供暖和冷却系统,软件模拟和混合系统。最终,这项研究分析了建筑物中热电应用的机会和前景,为当前的能源回收景观提供了宝贵的见解,尤其是在生物质和市政固体废物分解的背景下。
尽管钢铁、水泥、铝、化学品、农产品等行业对全球经济至关重要,但它们在减少排放方面也面临重大挑战。工业公司经常对最有效的即时减排技术方法感到困惑。对这些难以减排的行业进行脱碳,这些行业由公司在现场管理自己的公用设施,这是一个重大机遇。减少排放的一个潜在策略是回收废热。工业过程中产生的热量可以重新用于各种有用的应用,例如发电或驱动化学反应。然而,目前这些废热中的大部分都未被利用,而是通过不同温度的废气或废水排放到环境中。通过回收和利用这些废热,可以显著减少初级燃料的使用和排放。此外,回收的废热的利用可以促进更平稳、更具成本效益的能源转型。这种再利用的热量可用于工业过程加热、城市电网加热或冷却,或转化为电能,具体取决于当地的能源需求模式以及燃料和电力价格。
船舶安全 (1)船体结构 (2)小型船舶的船体结构 (3)艉框架 (4)舵 (5)舵杆及舵主要部件 (6)货舱、船体分段 (7)JG 指定的钢质舱口盖 (8)防水布、木质舱口盖、舷窗 (9)JG 指定的其他水密关闭装置 (10)不燃材料制成的防火门、防火窗、防火阀、其他隔断材料、低火灾风险的家具和设备 (11)防火门的电动操作系统 (12)鼓风机 (13)冷却系统管道组件中的绝缘材料 (14)冷却系统绝缘材料的防潮表面材料或粘合剂 (15)表面处理材料 (16)起居处所甲板或舱壁的隔音材料 (17)高速 (18)船体结构材料,钢材或其他非金属材料 (19)塑料树脂 (20)玻璃纤维粗纱(21)橡胶布或短切毡橡胶布(22)蒸汽机(23)内燃机(24)舷内舷外发动机(25)舷外发动机(26)燃气轮机(27)锅炉(28)废气涡轮增压器
摘要基于细胞的免疫疗法(CBIS),特别是用嵌合抗原受体(CAR)设计的T(CAR-T)细胞疗法来体现的,已成为癌症治疗的开创性方法。尽管如此,类似于其他各种治疗方式,肿瘤细胞采用了反策略来表现免疫逃避,从而规避了CBIS的影响。这种现象是由根植于肿瘤微环境(TME)内的复杂免疫抑制促进的。主要的机制是基于CBIS的肿瘤免疫逃避的主要机制,包括抗原的丧失,抗原呈递的下调,免疫检查点途径的激活,抗凋亡级联反应的启动以及免疫功能障碍和废气的诱导。在这篇综述中,我们深入研究了肿瘤细胞能够抵抗CBIS和提供前瞻性策略的能力的固有机制,以应对这些挑战。关键字免疫逃避,基于细胞的免疫疗法(CBI),嵌合抗原受体(CAR),CAR工具T(CAR-T)细胞治疗,肿瘤微环境(TME),免疫检查点蛋白,肿瘤异质性
摘要基于细胞的免疫疗法(CBIS),特别是用嵌合抗原受体(CAR)设计的T(CAR-T)细胞疗法来体现的,已成为癌症治疗的开创性方法。尽管如此,类似于其他各种治疗方式,肿瘤细胞采用了反策略来表现免疫逃避,从而规避了CBIS的影响。这种现象是由根植于肿瘤微环境(TME)内的复杂免疫抑制促进的。主要的机制是基于CBIS的肿瘤免疫逃避的主要机制,包括抗原的丧失,抗原呈递的下调,免疫检查点途径的激活,抗凋亡级联反应的启动以及免疫功能障碍和废气的诱导。在这篇综述中,我们深入研究了肿瘤细胞能够抵抗CBIS和提供前瞻性策略的能力的固有机制,以应对这些挑战。关键字免疫逃避,基于细胞的免疫疗法(CBI),嵌合抗原受体(CAR),CAR工具T(CAR-T)细胞治疗,肿瘤微环境(TME),免疫检查点蛋白,肿瘤异质性
船舶安全 (1)船体结构 (2)小型船舶的船体结构 (3)艉框架 (4)舵 (5)舵杆及舵主要部件 (6)货舱、船体分段 (7)JG 指定的钢质舱口盖 (8)防水布、木质舱口盖、舷窗 (9)JG 指定的其他水密关闭装置 (10)不燃材料制成的防火门、防火窗、防火阀、其他隔断材料、低火灾风险的家具和设备 (11)防火门的电动操作系统 (12)鼓风机 (13)冷却系统管道组件中的绝缘材料 (14)冷却系统绝缘材料的防潮表面材料或粘合剂 (15)表面处理材料 (16)起居处所甲板或舱壁的隔音材料 (17)高速 (18)船体结构材料,钢材或其他非金属材料 (19)塑料树脂 (20)玻璃纤维粗纱(21)橡胶布或短切毡橡胶布(22)蒸汽机(23)内燃机(24)舷内舷外发动机(25)舷外发动机(26)燃气轮机(27)锅炉(28)废气涡轮增压器