可再生能源的生长需要灵活,低成本和有效的电气存储,以平衡能源供应与需求之间的不匹配。泵送的热能储存(PTE或Carnot电池)在电气产生大于需求时,用热泵(或其他加热系统)将电能转换为热能;当电力需求超过生产时,PTE会从两个热存储库(可能是Rankine循环模式)产生电力。经典PTES架构的成就不超过60%的往返电力效率。但是,使用废热回收率(热积分PTE)的创新档案能够达到比热泵的电力消耗大的功率循环的电力生产,从而增加了技术的价值。在本文中,开发了一个通用模型来根据两个主要输入(废热和环境空气温度)绘制性能映射。无论储存配置如何,当废热温度高,气温较低并且热泵的提升时,可以达到最佳性能。最后,将热整合的PTE技术与其他能量储藏的技术进行了比较,并且由于其高往返效率,低特定的价格和没有特定的地理条件,因此在理论上是有希望的。©2020 Elsevier Ltd.保留所有权利。
本文讨论了在恶劣环境下废热回收 (WHR) 的工业潜力——恶劣环境下废热回收的定义是废热流的温度至少为 650°C 或含有使热回收复杂化的反应性成分。分析涵盖五个行业(钢铁、铝、玻璃、水泥和石灰),选择这些行业是基于生产量、含有恶劣环境成分的废气排放量、回收比目前回收量多得多的热量的可能性以及目前缺乏可接受的 WHR 选项。这些行业在恶劣环境下产生的废热流中发现的总潜在能源节约相当于美国制造业损失的工艺热能的 15.4%(113.6 TWh)。评估了这些行业现有的技术和材料,并估算了每个工业部门可从恶劣环境气体中回收的废热。最后,对每个废热源的深入总结显示了废热可以在何处回收以及必须解决哪些具体问题。潜力最大的是钢铁高炉(46 TWh/年)。考虑的其他废热流包括钢电弧炉(14.1 TWh/年)、平板玻璃(3.6 TWh/年)、容器玻璃(5.7 TWh/年)、玻璃纤维(1.1 TWh/年)、特种玻璃(2.2 TWh/年)、铝熔炉(4.7 TWh/年)、水泥(17.1 TWh/年)和石灰(10.5 TWh/年)。尽管在恶劣环境中回收废热的尝试大多未获成功,但研究和技术的进步可能会释放出巨大的能源和成本节约潜力。
[1] 赵学历 , 金尚忠 , 王乐 , 等 . 基于结构函数的 LED 热特 性测试方法 [J]. 光电工程 , 2011, 38(9): 115-118. [2] 张立 , 汪新刚 , 崔福利 . 使用 T3Ster 对宇航电子元器件 内部热特性的测量 [J]. 空间电子技术 , 2011(2): 59-64. [3] MEY G, VERMEERSCH B, BANASZCYK J, et al. Thermal Impedances of Thin Plates[J]. International Journal of Heat and Mass Transfer, 2007, 50: 4457-4460. [4] VASILIS C, PANAGIOTIS C, IONNANIS P, et al. Dy- namic Thermal Analysis of Underground Medium Power Cables Using Thermal Impedance, Time Constant Distri- bution and Structure Function[J]. Applied Thermal Engi- neering, 2013, 60: 256-260. [5] MARCIN J, JEDRZEJ B, BJORN V, et al. Generation of Reduced Dynamic Thermal Models of Electronic Systems from Time Constant Spectra of Transient Temperature Responses[J] Microelectronics Reliability, 2011, 51: 1351-1355. [6] MARCIN J, ZOLTAN S, ANDRZEJ N. Impact of
工业或城市设施产生的废热是一种尚未得到充分利用且长期被忽视的能源,而供暖和制冷占欧洲最终能源需求的一半。从 2010 年代初开始,废热回收 (WHR) 被认为是能源转型的一个关键挑战,并倾向于纳入不同层面的能源战略。本文分析了 WHR 如何成为欧洲和法国的公共政策问题。基于文献综述,分析表明 WHR 一直被视为一个技术经济问题,而其发展的一些障碍(法律、组织)仍未得到解决。对欧洲和法国能源议程的研究表明,WHR 是如何逐渐开始被视为仅次于可再生能源的能源资源的。因此,提出了一些问题,即社会科学如何对解决 WHR 的扩展研究议程做出进一步贡献。
设备,采用非平衡分子动力学方法来研究工作温度,界面大小,缺陷密度和缺陷类型对氮化碳/石墨烯/钻石异种结构的界面导热率的影响。此外,计算各种条件下的声子状态密度和声子参与率,以分析界面热传导机制。结果表明,界面热电导随温度升高而增加,突出了异质性固有的自我调节热量耗散能力。随着温度从100升的增加,单层石墨烯结构的界面热电导增加了2.1倍。这归因于随着温度升高的重叠因子的增加,从而增强了界面之间的声子耦合,从而导致界面导热率增加。此外,在研究中发现,增加氮化岩和石墨烯的层数会导致界面热电导量减少。当氮化壳层的数量从10增加到26时,界面的导热率降低了75%。随着层数增加而减小的重叠因子归因于接口之间的声子振动的匹配减少,从而导致较低的热传递效率。同样,当石墨烯层的数量从1增加到5时,界面热电导率降低了74%。石墨烯层的增加导致低频声子减少,从而降低了界面的导热率。此外,多层石墨烯可增强声子定位,加剧了界面导热的降低。发现引入四种类型的空缺缺陷会影响界面的导电电导。钻石碳原子缺陷导致其界面导热率增加,而镀凝剂,氮和石墨烯碳原子的缺陷导致其界面导热降低。随着缺陷浓度从0增加到10%,由于缺陷散射,钻石碳原子缺陷增加了界面热电导率,增加了40%,这增加了低频声子模式的数量,并扩大了界面热传递的通道,从而提高了界面热电导率。石墨烯中的缺陷加强了石墨烯声子定位的程度,因此导致界面导热率降低。胆汁和氮缺陷都加强了氮化炮的声子定位,阻碍了声子传输通道。此外,与氮缺陷相比,甘露缺陷会引起更严重的声子定位,因此导致界面的界面热电导率较低。这项研究提供了制造高度可靠的氮化炮设备以及广泛使用氮化壳异质结构的参考。
零能源建设电力 - 热热双层能量优化控制方法Kong Lingguo 1,Wang Shibo 1,Cai Guowei 1,Liu Chuang 1,Guo Xiaoqiang 2
能源效率是降低水泥过程和遏制碳排放的最有效措施之一。提高能源效率的干预区域与热能收集有关。水泥制造工艺需要大量的热量,但由于能量转化的效率低下,几乎40%的它变成了排气热,但没有开发。这代表了废热恢复(WHR)的重要机会,可以极大地提高整体效率。根据Persson等人的分析。在KC ORC关于欧洲能源密集型行业的研究中,热能仅用于总能量输入的25%,这意味着目前浪费了从初级燃料中获得的热能的75%。1分析确定了1175个欧洲工业地点,其废热电位超过50 mW。通过在本研究中映射的水泥厂中恢复估计的废热,可以使用有机兰金循环(ORC)技术产生大约447.3 MW的电力。
Pruden博士赢得了B.S. 在辛辛那提大学的生物科学(1997)和她的环境科学博士学位(2002年)。 她的研究和教学重点是将微生物生态学观点带入对水,废水和回收水系统的设计和管理中对病原体和抗生素耐药性的控制。 Pruden博士是《联合国环境计划2023年报告》的合着者,为超级细菌提供了支持,并在水系统委员会的军团elly夫国家科学院工程与医学学院(NASEM)管理中任职。 她是科学与工程学总统早期职业奖,保罗·L·布希奖,水研究基金会研究创新奖,《食用国际环境环境奖》,并且是国际水协会的院士。Pruden博士赢得了B.S.在辛辛那提大学的生物科学(1997)和她的环境科学博士学位(2002年)。她的研究和教学重点是将微生物生态学观点带入对水,废水和回收水系统的设计和管理中对病原体和抗生素耐药性的控制。Pruden博士是《联合国环境计划2023年报告》的合着者,为超级细菌提供了支持,并在水系统委员会的军团elly夫国家科学院工程与医学学院(NASEM)管理中任职。她是科学与工程学总统早期职业奖,保罗·L·布希奖,水研究基金会研究创新奖,《食用国际环境环境奖》,并且是国际水协会的院士。