聚丙烯是电池壳体中常用的塑料,由于其复杂的组成,历史上一直在回收过程中构成了重大挑战。最近的进步彻底改变了从废弃的铅酸电池中回收的聚丙烯。gme开发了一种创新的回收厂,不仅会粉碎,洗涤和去氨基甲基聚丙烯,从而达到令人印象深刻的纯度含量<200 ppm的铅,而且还采用先进的分类和分离技术,例如,波长 - 观看剂,例如基于颜色检测,以高效地孤立和提取聚丙烯元素组合。工厂的输出有两种形式:PP芯片(大约10mm)和PP颗粒(大约1mm)。这种创新的方法从垃圾填埋场中转移了大量的塑料废物,从而使聚丙烯在各种行业中重复使用,从而减少了对原始塑料的需求并保存了宝贵的资源。本文介绍了对聚丙烯恢复过程的详细研究,并强调了GME对可持续和循环经济的贡献。
可再生能源技术,例如风力涡轮机,太阳能光伏(PV)面板或储能系统对于欧洲向气候中立的过渡至关重要。同时,这些“绿色”技术也应符合欧洲绿色协议的环境目标。在几十年前安装了其中的许多人,并且可能不是根据循环经济原则设计的,因此,不可避免的是,它们的废物产生不仅会在未来几年中迅速增加,而且这些新兴的废物流也将对当前的回收基础设施构成挑战,这两者都来自定性和定量的观点。这项研究旨在(i)映射和选择与能源过渡,特别是可再生电力部门有关的最相关的废物流; (ii)分析其废物管理的主要挑战,也分析与这些废物流有关的机会; (iii)确定应对挑战的现有或潜在业务模型和解决方案;以及(iv)讨论重要的驱动因素和框架条件,以实现未来几年迈向更大循环的确定机会和解决方案。
快速的工业化和城市化,以满足对关键商品繁荣的日益增长的呼吁,增加了环境污染。环境污染物一直是主要困难,影响了生活的高满意度(Goutam等,2021)。由于多样化的人为活动,例如家庭公司,附近的一个城市和工业产生了大量废水,产生了大量的废物/拒绝水,产生了大量的废水和工业,从而获得了水体(流(Stream/rivers)(流式/河流),而无需使用正确的水,以下是20的水。 如今,被重金属污染的水体已成为广泛的危机(Bhafid等,2017)。 重金属具有多种特性,其中包括持续,不可降解和累积的属性,构成健康危害,可以通过生物蓄积运输。 重金属积累是公共卫生产生了大量的废物/拒绝水,产生了大量的废水和工业,从而获得了水体(流(Stream/rivers)(流式/河流),而无需使用正确的水,以下是20的水。如今,被重金属污染的水体已成为广泛的危机(Bhafid等,2017)。 重金属具有多种特性,其中包括持续,不可降解和累积的属性,构成健康危害,可以通过生物蓄积运输。 重金属积累是公共卫生如今,被重金属污染的水体已成为广泛的危机(Bhafid等,2017)。重金属具有多种特性,其中包括持续,不可降解和累积的属性,构成健康危害,可以通过生物蓄积运输。重金属积累是公共卫生
工业或城市设施产生的废热是一种尚未得到充分利用且长期被忽视的能源,而供暖和制冷占欧洲最终能源需求的一半。从 2010 年代初开始,废热回收 (WHR) 被认为是能源转型的一个关键挑战,并倾向于纳入不同层面的能源战略。本文分析了 WHR 如何成为欧洲和法国的公共政策问题。基于文献综述,分析表明 WHR 一直被视为一个技术经济问题,而其发展的一些障碍(法律、组织)仍未得到解决。对欧洲和法国能源议程的研究表明,WHR 是如何逐渐开始被视为仅次于可再生能源的能源资源的。因此,提出了一些问题,即社会科学如何对解决 WHR 的扩展研究议程做出进一步贡献。
树木是地球上最大的生物体,植物通常是我们的主要可再生资源之一。木材作为一种材料自人类诞生以来就一直被使用。如今,林业仍然为各种应用提供原材料,例如建筑业、造纸业和各种木制品。然而,树木的许多部分,如反应木、树枝和树皮,经常被丢弃为林业残留物和废木,用作复合材料的添加剂或燃烧以生产能源。树皮更高级的用途包括提取用于胶水、食品添加剂或医疗保健的化学物质,以及转化为高级碳材料。在这里,我们认为,正确理解这些森林残留物的内部纤维结构和由此产生的机械行为,可以设计出具有多种特性和应用的材料。我们表明,简单而廉价的处理可以使树皮具有皮革般的外观,可用于建造庇护所,甚至制造编织纺织品。本文是主题文章“用于新兴技术的生物衍生和生物启发的可持续先进材料(第一部分)”的一部分。
项目描述 该项目将综合模拟方法融入城市可再生建筑和社区优化 (URBANopt) 平台,以便对相连建筑区域内的废热源进行详细分析。这些进步将通过将 URBANopt 软件开发工具包 (SDK) 与开源 Modelica 编程语言和下一代 EnergyPlus Spawn(美国能源部 (DOE) 支持的建筑能量模拟程序)相结合来实现。更新后的 URBANopt 平台将能够评估与商业和住宅建筑相关的工业流程和废热机会。
在回收铝屑时,氧化铝层会产生很大的问题,限制铝金属在相邻屑之间的结合。多位研究人员 [9,27,29,30] 报告称,如果氧化铝层破裂并分散在基质中,则回收材料的屈服强度、抗拉强度和显微硬度会提高,因为会形成由铝和氧化铝颗粒组成的复合材料。然而,他们也观察到这种回收铝复合材料的塑性显著下降。然而,其他作者 [18] 观察到氧化物会刺激空腔成核,从而产生过早断裂,随着氧化物含量的增加,材料的伸长率会降低。此外,他们指出,氧化物的浓度对回收材料的机械性能影响较小 [13,31],这与之前提出的观点相矛盾。总体而言,就屑片之间的结合而言,无论是液体还是固体回收屑的方法,氧化层始终被视为一道屏障。
