免责声明这一信息是作为由美国政府机构赞助的工作的帐户准备的。美国政府或其任何机构,或其任何雇员均未对任何信息,设备,产品或过程披露或代表其使用将不会侵犯私人拥有的私有权利。参考文献以商品名称,商标,制造商或其他方式指向任何特定的商业产品,流程或服务,并不一定构成或暗示其认可,建议或受到美国政府或其任何机构的支持。本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。
摘要生物聚合物正在为商品和特种化学品的生产增强。微生物能够产生各种各样的生物聚合物,其中一些已经生产,而另一些则需要进一步的特征,甚至可以被发现。本评论文章的重点是生物聚合物,例如多酯(多羟基烷酸酯(PHAS),多糖和蛋白质,由于它们能够为已经建立的基于化石的聚合物提供有吸引力的替代品。此外,这些生物蛋白质也可以作为农业蛋白质的替代品。为了降低生产成本并使废物具有新的资源状态,已建议通过使用开放的混合微生物培养物(MMC)生产有机废物的微生物生物聚合物和副产品。MMC强度和弱点分析表明,在复杂的原料应用方面,该系统可能与生产各种微生物聚合物有关。已经开发出用于将微生物群落定向到某些功能的原始原则,并且对该主题进行的研究仍然非常活跃。在本评论文章中,我们认真研究了过去几十年来发现的微生物富集策略,以使开放MMC的生物聚合物生产成为工业现实。
食物垃圾(FW)的热液预处理已成为一种有希望的策略,以增强用污泥的厌氧共同消化的性能。全球人口和经济活动不断升级导致市政固体废物(MSW)产生激增,带来了重大的环境挑战(Chuen Chen等人。2020)。在人口稠密的城市中,诸如香港的人均FW的产量为0.30 kg/天,而污水污泥(SS)的价格超过0.16千克/天(HKEPD 2019)。在香港产生的11,057吨/天的11,057吨的30.0%包括FW,SS的产量达到约1,052吨/天约为1,052吨(EPD 2021)。鉴于FW在香港的MSW组成中的主要存在,政府提议利用现有污水处理厂的盈余AD容量进行FW/SS共同消化,与单消化相比提供了较高的好处(Mehariya等人。2018)。因此,迫切需要通过有效的厌氧共同消化实践来增强FW和SS的处理,以减轻不利的环境和社会影响。厌氧消化被认为是通过富含甲烷的沼气生产的同时废物处理和能量回收的可行方法(Johnravindar等人。2022)。fw的特征是其高水分含量和降解性,是AD的理想基板。然而,AD在FW和SS中的独立应用面临挑战,例如高机载荷,快速酸化,延长的固体保留率以及抑制物质的存在。2020)。2020)。因此,废水处理厂的污泥中包含大量的重金属,病原体和细菌(Kaur等人。AD涉及一系列的生物学过程,这些过程在没有氧气的情况下通过微生物作用将复杂的底物转化为沼气,其中包括水解,酸生成,乙酰发生和甲烷发生。水解通常是由于形成有毒副产品或不良挥发性脂肪酸(VFAS)而导致复杂有机基质的速率限制步骤(VFAS),而甲烷生成会对易于生物降解的底物产生限制(Kaur等人,在这种情况下,已显示FW和SS的厌氧共同消化可提高消化效率并优化
此图将西伯克郡人口的分布(橙色为“实际”)与在不同邮政编码区域之间咨询(灰色的“受访者”)分配的分布。“实际”百分比代表每个邮政编码区域中总人口的比例,而“受访者”百分比表示每个区域的咨询参与者的比例。请注意,在某些地区,受访者的百分比超过了人口的实际百分比,这表明相对于其人口规模,这些地区的参与程度更高。Q3您在西伯克郡住了多久?Q3您在西伯克郡住了多久?
方法:在拉合尔旁遮普大学的道德批准(ERC144/23)之后,从垃圾填埋场和水生环境中分离出塑料降解的微生物菌株。这些分离株是在受控实验室中培养的,使用补充PE和PET作为唯一碳源的最小盐培养基。在四个星期内进行了实验,塑料样品在25°C,35°C和45°C下在5、7和9。氧气可用性受到控制,以产生有氧和厌氧条件。通过减肥测量,通过扫描电子显微镜进行表面形态分析以及通过光密度(OD600)测量来评估塑性降解效率。使用单向方差分析和t检验进行统计分析,p值<0.05被认为是显着的。
塑料污染已升级为全球环境危机,数百万吨合成聚合物在生态系统中积累,对生物多样性和人类健康构成重大威胁。传统的塑料废物管理方法,如机械和化学回收,在可持续性方面表现出局限性,特别是对于聚乙烯 (PE) 和聚苯乙烯 (PS) 等聚合物,它们表现出明显的抗降解性。利用微生物酶和合成生物学的生物技术方法为解决这一紧迫问题提供了一种有希望的替代方案。促进聚对苯二甲酸乙二醇酯 (PET) 降解的酶(如 PETase 和 MHETase)与针对更难降解塑料的漆酶和脂肪酶结合,在分子水平上分解塑料方面表现出了巨大的潜力。尽管取得了这些进展,但在降解效率方面仍然存在挑战,尤其是对于非 PET 塑料,以及扩大这些生物技术工艺的经济可行性。此外,温度、pH 值和氧气水平等环境参数显著影响酶的功能,而监管和社会障碍阻碍了转基因生物 (GMO) 的利用。尽管如此,蛋白质工程、基于 CRISPR 的基因编辑等新兴技术以及生物反应器等工业应用为克服这些挑战提供了途径。本文探讨了生物技术塑料降解的当前形势、挑战和前景,强调了其对实现全球循环经济目标和加强可持续废物管理战略的潜在贡献。
摘要:由于其宜人的玫瑰色气味,芳香醇2-苯基乙醇(2-PE)的市场需求巨大。由于这种有价值的化合物用于食品,化妆品和药品,因此消费者和安全法规往往更喜欢其生产的自然方法,而不是合成的方法。天然2-PE可以通过从各种流量中提取精油(包括玫瑰,风信子和茉莉花)或通过生物技术途径而产生。实际上,自然2-PE的稀有性能使无法满足庞大的市场需求并达到高销售价格。因此,有必要开发一种更有效,经济和环保的生物技术方法,以替代传统工业。最有前途的方法是通过微生物发酵,尤其是使用酵母。许多酵母具有使用L -PHE作为前体产生2 -PE的能力。某些农业工业废物和副产品具有高营养价值的特殊性,使其成为微生物生长的合适培养基,包括通过酵母发酵生产2-PE。本综述总结了通过在合成介质以及各种农业废物和副产品上发酵不同酵母菌的生物技术生产。
摘要:电气和电子设备(WEEE)的废物,也称为电子废物,包含贵金属的高价值。WEEE遭受了巨大的不利环境威胁和健康危害。几篇文献已经检查了WEEE的不利影响,很少有人提出了缓解这些电子废物风险的补救措施。这些措施的重点是将电子废物中的贵金属回收回经济。但是,这些研究已经承认,当前的回收过程往往是昂贵的,它们的结果对经济不可行。本研究提出了从线性转变为Turkiye的循环经济的转变。它采用了一种定性方法,形式是对13位专家的访谈。研究的主要发现表明:1)Turkiye缺乏与电子废物管理有关的效率,适当的计划和适当的法律; 2)与WEEE管理相关的法律法规是陈旧且未开发的,3)Turkiye的回收欠发达。这项研究为未来的研究提供了有价值的信息,这些信息将有助于改善Turkiye的回收利用。
现代技术,尤其是人工智能,通过开发智能系统来优化从其一代到最终处置的最短路线,在改善医疗废物管理方面起着至关重要的作用。算法(例如Q学习和深Q网络)提高了运输和处置的效率,同时降低了环境污染的风险。在这项研究中,使用具有3吨能力的均质代理系统对人工智能算法进行培训,以优化封闭的电容车辆路由问题框架内医院之间的路线。将AI与探路技术集成在一起,尤其是混合A*-Deep Q网络方法,尽管最初的挑战,但仍导致了先进的结果。k均值聚类用于将医院分为区域,使代理可以使用深Q网络导航最短路径。分析表明,代理的能力尚未完全利用。这导致了使用Deep Q网络的分数背包动态编程应用,以最大程度地利用能力利用,同时实现最佳路线。由于用于比较算法的有效性的标准是车辆的数量和总车辆容量的利用率,因此发现具有DQN的分数背包脱颖而出,因为它需要最少的车辆数量(4),在该指标中达到0%的损失,因为它与最佳值相匹配。与其他需要5或7辆汽车的算法相比,它分别将车队尺寸降低了20%和42.86%。此外,与其他方法不同,它仅利用了车辆容量的33%至66%,它以100%的价格最大化车辆的容量利用率。但是,这种改进是以距离增加9%的成本,反映了每次旅行服务更多医院所需的较长路线。尽管取消了这种权衡,但该算法能够最大程度地减少车队的大小而充分利用车辆容量,这使其成为这些因素至关重要的情况下的最佳选择。这种方法不仅提高了性能,还提高了环境可持续性,使其成为研究中使用的所有算法中最有效,最具挑战性的解决方案。
1 简介................................................................................................................................................ 5