工业或城市设施产生的废热是一种尚未得到充分利用且长期被忽视的能源,而供暖和制冷占欧洲最终能源需求的一半。从 2010 年代初开始,废热回收 (WHR) 被认为是能源转型的一个关键挑战,并倾向于纳入不同层面的能源战略。本文分析了 WHR 如何成为欧洲和法国的公共政策问题。基于文献综述,分析表明 WHR 一直被视为一个技术经济问题,而其发展的一些障碍(法律、组织)仍未得到解决。对欧洲和法国能源议程的研究表明,WHR 是如何逐渐开始被视为仅次于可再生能源的能源资源的。因此,提出了一些问题,即社会科学如何对解决 WHR 的扩展研究议程做出进一步贡献。
树木是地球上最大的生物体,植物通常是我们的主要可再生资源之一。木材作为一种材料自人类诞生以来就一直被使用。如今,林业仍然为各种应用提供原材料,例如建筑业、造纸业和各种木制品。然而,树木的许多部分,如反应木、树枝和树皮,经常被丢弃为林业残留物和废木,用作复合材料的添加剂或燃烧以生产能源。树皮更高级的用途包括提取用于胶水、食品添加剂或医疗保健的化学物质,以及转化为高级碳材料。在这里,我们认为,正确理解这些森林残留物的内部纤维结构和由此产生的机械行为,可以设计出具有多种特性和应用的材料。我们表明,简单而廉价的处理可以使树皮具有皮革般的外观,可用于建造庇护所,甚至制造编织纺织品。本文是主题文章“用于新兴技术的生物衍生和生物启发的可持续先进材料(第一部分)”的一部分。
项目描述 该项目将综合模拟方法融入城市可再生建筑和社区优化 (URBANopt) 平台,以便对相连建筑区域内的废热源进行详细分析。这些进步将通过将 URBANopt 软件开发工具包 (SDK) 与开源 Modelica 编程语言和下一代 EnergyPlus Spawn(美国能源部 (DOE) 支持的建筑能量模拟程序)相结合来实现。更新后的 URBANopt 平台将能够评估与商业和住宅建筑相关的工业流程和废热机会。
在回收铝屑时,氧化铝层会产生很大的问题,限制铝金属在相邻屑之间的结合。多位研究人员 [9,27,29,30] 报告称,如果氧化铝层破裂并分散在基质中,则回收材料的屈服强度、抗拉强度和显微硬度会提高,因为会形成由铝和氧化铝颗粒组成的复合材料。然而,他们也观察到这种回收铝复合材料的塑性显著下降。然而,其他作者 [18] 观察到氧化物会刺激空腔成核,从而产生过早断裂,随着氧化物含量的增加,材料的伸长率会降低。此外,他们指出,氧化物的浓度对回收材料的机械性能影响较小 [13,31],这与之前提出的观点相矛盾。总体而言,就屑片之间的结合而言,无论是液体还是固体回收屑的方法,氧化层始终被视为一道屏障。
7000系列可分为铝合金中强度最高的Al-Zn-Mg-Cu系和不含Cu的焊接结构用Al-Zn-Mg系合金,用于要求高强度和轻量化的部件。7075是被称为超级硬铝的典型热处理Al-Zn-Mg-Cu系合金,用作轻质结构材料。7204是焊接结构用典型热处理Al-Zn-Mg系合金。由于其强度高、接头效率高,焊接后热影响区通过自然时效可恢复到接近母材的强度,因此被用于铁路车辆和陆地结构。1000系列由于其耐腐蚀性和可加工性优良,因此被用于热交换器部件; 3000系列用于管道;4000系列由于其优异的耐热性和耐磨性而用于锻造部件。
TALAT 讲座 2404 质量考虑因素 51 页,29 幅图 高级水平 由慕尼黑工业大学的 Dimitris Kosteas 编写 目标: − 了解处理实验数据的基本概念和工具,并将其与现有的设计建议进行比较 − 了解结构细节的分类参数以及设计原则与质量标准之间的定量联系 − 能够对当前建议中未包括的进一步结构细节进行复杂的设计 − 教授提高疲劳强度的方法,尤其是焊后处理 先决条件: − 需要具备工程、材料和疲劳方面的背景知识 发行日期:1994 年 EAA - 欧洲铝业协会
摘要:在所有金属添加剂制造(AM)技术中,有向能量存储(DED)技术,尤其是基于电线的技术,由于其快速产生而引起了人们的极大兴趣。此外,它们被认为是能够生产功能齐全的结构零件,具有复杂几何形状和几乎无限尺寸的近网状产品的最快技术。根据热源,有几种基于电线的系统,例如等离子体弧焊接和激光熔点沉积。主要缺点是缺乏市售的电线;对于说明,没有高强度铝合金线。因此,本综述涵盖了电线生产的常规和创新过程,并包括具有最大工业兴趣的Al-Cu-Li合金的摘要,以使最适合和促进最合适的电线组合物的选择。每个合金元件的作用是WAAM特定线设计的关键;这篇综述描述了每个元素的作用(通常通过年龄硬化,实心解决方案和谷物尺寸减少来加强),并特别注意锂。同时,WAAM部件中的缺陷限制了其适用性。出于这个原因,提到了与WAAM过程有关的所有缺陷,以及与合金的化学组成相关的缺陷。最后,总结了未来的发展,其中包括针对Al-Cu-Li合金的最合适技术,例如PMC(Pulse Multicontrol)和CMT(冷金属传递)。
根据法规要求,部长考虑了第 232(d) 条规定的所有因素。特别是,部长审查了进口对国家安全要求的影响,包括:预计的国防要求所需的国内生产;国内产业满足此类要求的能力;国防所必需的人力资源、产品、原材料和其他物资和服务的现有和预期可用性;此类产业和物资和服务的增长要求,包括确保此类增长所需的投资、勘探和开发;以及影响此类产业的商品进口的数量、可用性、特性和用途;以及美国满足国家安全要求的能力。
我要感谢我的导师、小组成员和委员会成员对我完成这项工作的大力支持。如果没有导师的指导、小组伙伴和朋友的帮助以及家人的支持,我不可能完成我的博士论文。我要向我的主要导师 Case 博士表示最深切的谢意。感谢您在这项工作期间为我提供宝贵的建议。我非常感谢您对我研究中所有问题的耐心和指导。作为导师,您不仅帮助我提高实验技能和加深我对铝研究的理解,还帮助我扩展了我在材料科学和有限元分析方面的背景。您面对困难和解决问题的积极态度和智慧也将使我受益匪浅。我也非常感谢我的共同导师 Lattimer 博士。感谢您将我带入热机械材料响应领域。您在热分析方面的丰富经验为我在实验设计和微观结构分析方面提供了有效的指导。作为一名工程师,您的专业严谨性在我整个研究生学习期间给我留下了深刻的印象,并将帮助我在未来成长为一名合格的工程师。Patrick,感谢您这些年来成为我最有帮助的同事和朋友;您为我的研究提供了许多宝贵的建议。我非常感谢您帮助我如何使用所有实验设备,并在我遇到问题时及时为我提供建议。您对追求知识和解决问题的执着也给我留下了深刻的印象并激励我做得更好。最后,我要感谢 Jessica、Nathan 和 Christian 对我的初始测试设置、DIC 测试系统和有限元模型的帮助。我还要感谢 Ben、Bilel 和 Roozbeh,你们珍贵的友谊对我来说是无可替代的。与你们一起工作给我的研究生学习带来了非常愉快的经历。
摘要:固体电解质是全固态电池(ASB)的关键成分。它在电极中需要增强锂电导率,并且可直接用作隔膜。锂填充石榴石材料 Li 7 La 3 Zr 2 O 12(LLZO)具有高锂电导率和对金属锂的化学稳定性,被认为是高能陶瓷 ASB 最有前途的固体电解质材料之一。然而,为了获得高电导率,需要使用钽或铌等稀土元素来稳定高导电立方相。这种稳定性也可以通过高含量的铝来实现,从而降低了 LLZO 的成本,但同时也降低了可加工性和锂电导率。为了找到石榴石基固态电池潜在市场引入的最佳点,可扩展且工业上可用的、具有高加工性和良好导电性的 LLZO 合成是必不可少的。本研究采用了四种不同的合成方法(固相反应(SSR)、溶液辅助固相反应(SASSR)、共沉淀(CP)和喷雾干燥(SD))来合成铝取代的 LLZO(Al:LLZO,Li 6.4 Al 0.2 La 3 Zr 2 O 12 ),并进行了比较,一方面关注电化学性能,另一方面关注可扩展性和环境足迹。这四种方法均成功合成,锂离子电导率为 2.0–3.3 × 10 −4 S/cm。通过使用湿化学合成法,煅烧时间可以从 850 °C 和 1000 °C 下的两个煅烧步骤(20 小时)减少到喷雾干燥法下 1000 °C 下仅 1 小时。我们能够将合成扩大到公斤级,并展示不同合成方法的大规模生产潜力。