I.在高性能计算系统,数据中心和其他短距离光学网络中,垂直腔表面发射激光器(VCSEL)是高速和功率的高速和功率短次光学互连(OIS)的首选光源[1]。这样的OI通常在0至70°C的温度范围内运行。但是,基于VCSEL的OIS的某些新兴应用,例如在某些军事系统中的汽车光学网络[2]和光网络,需要在温度较大的范围内运行,例如从-40到125°C。VCSEL是OI温度敏感的组件,成本和功率效率所需的未冷却/未加热的操作,因此需要在温度依赖性降低的VCSEL上,在温度范围更大的情况下运行。在高温下降低温度依赖和改善的VCSER性能也将使基于VCSEL的光学收发器在高性能计算系统中的共包装受益[3]。
然后,本文将使用多个阶段的涡轮机提出一个创新的冷冻冷却概念,该概念基于相同的工业涡轮增压器技术,可以在20-30 Kelvin温度范围内提供约1 kW的冷却能力(或在65 K时为5-6 kW),足以冷却10 mW的风力涡轮机。将来的其他版本可能在4 K处运行。它基于Air Liquide在成熟的反向涡轮增压涡轮增压 - 布雷顿制冷技术方面的丰富经验(从国际空间站,HTS地面应用于LNG船舶运营商)和大型科学工具(Cern-LHC,Iter,Iter,slac,slac等)。
B'Abstract:磷酸锂(LFP)/石墨蝙蝠长期以来一直占据了能源电池市场的主导,预计将成为全球电池电池市场中的主要技术。但是,LFP/石墨电池的快速充电能力和低温性能严重阻碍了它们的进一步扩散。这些局限性与界面锂(LI)-OION运输密切相关。在这里,我们报告了一种基于宽的酯基电解质,该电解质具有高离子的有效性,快速的界面动力学和出色的膜形成能力,通过调节Li Salt的阴离子化学。通过采用三电极系统和松弛时间技术的分布来定量地揭示电池的界面屏障。还系统地研究了所提出的电解质在防止LI 0电镀和持续均匀和稳定的相互作用中的优势作用。LFP/石墨细胞在80 \ XC2 \ XB0 C至80 \ XC2 \ XB0 C的超速温度范围内表现出可再生能力,并且在没有寿命的情况下出色的快速充电能力。特别是,实用的LFP/石墨袋细胞在1200个循环后(2 C)(2 C)和10分钟电量在25 \ XC2 \ XB0 C时达到89%(5 c),即使在80 \ xc2 \ xb0 C.'\ xc2 \ xb0 C \ xb0 C \ xb0 C上,可实现80.2%的可靠性。
neg的笔尖在各个领域,包括空间应用,半导体制造过程以及医疗和环境设备,引起人们关注其广泛的工作温度范围和安全性特征,例如没有点火和气体产生风险。该样品运输是NEG迅速满足这些需求的重要步骤,并促进了常规二级电池无法容纳的应用领域的开发。现有的二级电池面临挑战,例如在低温下冻结电解质,并且由于高温下的侧面反应而导致内部材料的恶化。值得注意的是,这个高温问题也发生在常规的全稳态电池中,这些电池不使用液体电解质。因此,即使使用基于硫化物的全稳态电池(正在广泛研究),扩大上部工作温度极限也不容易。
宽频段晶体中的抽象缺陷中心对它们在光电和传感器技术中的应用中的潜力引起了人们的兴趣。然而,众所周知,由于钻石,碳化硅或氧化铝的高度绝缘晶体中的缺陷,由于其较大的内部耐药性,因此很难电气兴奋。为了应对这一挑战,我们意识到了基于十六角硼(HBN)的碳中心的垂直隧道连接处令人兴奋的缺陷范式。通过Van der Waals技术的设备的合理设计使我们能够升高和控制与缺陷到波段和intradefect的电致发光有关的光学过程。对隧道事件的基本理解是基于HBN中的谐振缺损状态之间电子波函数振幅转移到石墨烯中金属状态的,这导致由于组成材料的不同条带结构而导致电子特性的巨大变化。在我们的设备中,通过隧道通路的电子衰变与辐射重组竞争,由于特征性隧道时间在屏障的厚度和结构上具有显着的敏感性,导致载体动力学的可调性程度。这使我们能够实现Intrade的过渡的高耐高率电激发,超过了几个数量级,因此在子兰段式方案中光激发的效率。这项工作代表了通用且可扩展的平台的显着进步,用于使用宽带间隙晶体中的缺陷中心的电动设备,其特性通过在设备工程水平上激活不同的隧道机制进行调制。
b'锂离子电池是便携式电子设备、电动和混合电动交通工具以及电网储能系统等各个领域使用最广泛的电源。 [1] 锂离子电池的优点包括其高能量密度(100\xe2\x80\x93200 Whkg 1)、低自放电率和 20\xe2\x80\x9365 \xc2\xb0 C 的工作温度范围。随着对消费电子产品的需求不断增长以及向电动汽车和可再生能源存储的转变,对锂离子电池的需求急剧增加。因此,锂离子电池被视为关键技术。然而,它们也面临着未来的挑战,例如降低生产和整体设备成本、回收和处理废旧电池的需要以及开发新的环保材料。 [2,3] 锂离子电池最重要的、实际上最先进的阳极材料是石墨,其理论容量为 372 mAhg 1 ,对应于饱和锂成分 LiC 6 。纯石墨的容量
摘要:等效电路模型 (ECM) 是模拟锂离子电池行为以监控和控制它们的最常用技术。此建模工具应足够精确以确保系统的可靠性。影响 ECM 精度的两个重要参数是施加的电流速率和工作温度。如果不彻底了解这些参数对 ECM 的影响,则应在校准过程中手动进行参数估计,这是不利的。在这项工作中,开发了一种增强型 ECM,用于高功率锂离子电容器 (LiC),适用于从 −30 ◦ C 的冻结温度到 +60 ◦ C 的高温,施加的电流速率为 10 A 至 500 A。在此背景下,通过对具有两个 RC 分支的 ECM 进行建模,进行了实验测试以模拟 LiC 的行为。在这些分支中,需要两个电阻和电容 (RC) 来保持模型的精度。验证结果证明,半经验二阶 ECM 可以高精度地估计 LiC 的电气和热参数。在此背景下,当电流速率小于 150 A 时,开发的 ECM 的误差低于 3%。此外,当所需功率较高时,在 150 A 以上的电流速率下,模拟误差低于 5%。
b'我们表明,与激光散斑相关的质动力可以以类似于库仑散射的方式散射激光产生的等离子体中的电子。给出了实际碰撞率的解析表达式。电子散斑碰撞在高激光强度或 \xef\xac\x81lamentation 期间变得重要,\xef\xac\x80影响长脉冲和短脉冲激光强度范围。例如,我们 \xef\xac\x81 发现国家点火装置空腔激光重叠区域中的实际碰撞率预计将超过库仑碰撞率一个数量级,从而导致电子传输特性发生根本变化。在短脉冲激光-等离子体相互作用的高强度特性下( I \xe2\x89\xb3 10 17 Wcm \xe2\x88\x92 2 ),散射足够强,导致激光能量直接吸收,产生能量缩放为 E \xe2\x89\x88 1 . 44 I/ 10 18 Wcm \xe2\x88\x92 2 1 / 2 MeV 的热电子,接近实验观察到的结果。 PACS 数字: PACS 数字。'
b'sandwich排列,其中包含捕获目标 - 信号探针。随后通过监测观察到的亚甲基蓝(MB)的峰值电流变化来检测所得的DNA杂交事件,该峰值电流变化被用作氧化还原物种,并实现了35 AM的检测极限。Wang等。 [5]基于RGO和锰四苯基孢子的A \ XCF \ X80-偶联结构的自组装纳米复合材料开发了DNA生物传感器,导致6 \ xc3 \ x9710 14M的检测极限,在另一项研究中,在另一项研究中,Ye等。 [6]采用了一个转导界面,该界面由捕获的DNA序列,Aunps和Thionines在玻璃碳电极上官能化RGO来构建无标记的DNA生物传感器,并获得了4.28 \ xc3 \ x9710 199的检测极限。 Chen等。 [7]还基于由氧化铜纳米线和羧基官能化的单壁碳纳米管(SWCNT)组成的杂化纳米复合材料(SWCNTS)开发了特定的序列DNA检测。 DNA检测是通过循环伏安法和3.5 \ xc3 \ x9710 15 m的检测极限。 Zhou等。 [8]使用化学上的RGO电极通过差分脉冲伏安法对ssDNA和dsDNA中的四个DNA碱基的无标记电化学检测进行了。 他们达到了2.0 \ XCE \ XBC M的检测极限,线性浓度范围为0.01至10 mm。 在另一项研究中,Zhang等人。 [9]为特定序列检测制造了无标记的DNA传感器。Wang等。[5]基于RGO和锰四苯基孢子的A \ XCF \ X80-偶联结构的自组装纳米复合材料开发了DNA生物传感器,导致6 \ xc3 \ x9710 14M的检测极限,在另一项研究中,在另一项研究中,Ye等。[6]采用了一个转导界面,该界面由捕获的DNA序列,Aunps和Thionines在玻璃碳电极上官能化RGO来构建无标记的DNA生物传感器,并获得了4.28 \ xc3 \ x9710 199的检测极限。Chen等。 [7]还基于由氧化铜纳米线和羧基官能化的单壁碳纳米管(SWCNT)组成的杂化纳米复合材料(SWCNTS)开发了特定的序列DNA检测。 DNA检测是通过循环伏安法和3.5 \ xc3 \ x9710 15 m的检测极限。 Zhou等。 [8]使用化学上的RGO电极通过差分脉冲伏安法对ssDNA和dsDNA中的四个DNA碱基的无标记电化学检测进行了。 他们达到了2.0 \ XCE \ XBC M的检测极限,线性浓度范围为0.01至10 mm。 在另一项研究中,Zhang等人。 [9]为特定序列检测制造了无标记的DNA传感器。Chen等。[7]还基于由氧化铜纳米线和羧基官能化的单壁碳纳米管(SWCNT)组成的杂化纳米复合材料(SWCNTS)开发了特定的序列DNA检测。DNA检测是通过循环伏安法和3.5 \ xc3 \ x9710 15 m的检测极限。Zhou等。 [8]使用化学上的RGO电极通过差分脉冲伏安法对ssDNA和dsDNA中的四个DNA碱基的无标记电化学检测进行了。 他们达到了2.0 \ XCE \ XBC M的检测极限,线性浓度范围为0.01至10 mm。 在另一项研究中,Zhang等人。 [9]为特定序列检测制造了无标记的DNA传感器。Zhou等。[8]使用化学上的RGO电极通过差分脉冲伏安法对ssDNA和dsDNA中的四个DNA碱基的无标记电化学检测进行了。他们达到了2.0 \ XCE \ XBC M的检测极限,线性浓度范围为0.01至10 mm。在另一项研究中,Zhang等人。 [9]为特定序列检测制造了无标记的DNA传感器。在另一项研究中,Zhang等人。[9]为特定序列检测制造了无标记的DNA传感器。将DNA固定在用石墨烯,Aunps和Polythionine(Pthion)修饰的玻璃碳电极上。通过不同的脉冲伏安法检测到杂交,并且在0.1 pm至10 nm的动态范围内达到了35 fm的检测极限。Bo等人开发了石墨烯和聚苯胺的电化学DNA生物传感器。[10]用于DPV检测辅助DNA序列,并达到了'
摘要 宽温度范围内液滴可控操控在微电子散热、喷墨打印、高温微流控系统等领域有着广阔的应用前景。然而,利用工业上常用的方法构建可控液滴操控平台仍然是一个巨大的挑战。流行的液滴控制方法高度依赖于外界能量输入,对液滴运动行为和操控环境(如距离、速度、方向和宽温度范围)的可控性相对较差。本文报道了一种简便易行、工业适用的制备Al超疏水(S-phobic)表面的方法,该表面能够在宽温度范围内控制液滴的弹跳、蒸发和传输。并进行了系统的机理研究。采用电化学掩模刻蚀和微铣削复合工艺在Al基底上制备了极润湿性表面。为了研究蒸发过程和热耦合特性,进行了宽温度范围内液滴的受控蒸发和受控弹跳。基于液滴在极端润湿性表面的蒸发调控和弹跳机理,利用拉普拉斯压力梯度和温度梯度,实现了在较宽温度范围内合流、分流、抗重力输运的液滴受控输运,为新型药物候选物、水收集等一系列应用提供了潜在的平台。