先进通用航空研究模拟器。这种固定式飞行模拟器专为研究应用而设计。它代表了 Piper Malibu/Matrix 级飞机(高性能、可收放起落架)。经过修改,它可以显示可重新编程的电子飞行仪表,代替或与传统的圆形表盘仪表一起使用,包括主飞行显示器、多功能显示器、平视显示器(插图)和各种系统和/或导航显示器。它可以配置具有适当力负荷的传统飞行控制系统或电传操纵侧臂性能控制系统。当采用玻璃座舱配置时,它代表了一种高性能、技术先进的飞机。它可以与其自己的 180 度窗外视觉系统(如图所示)一起使用,也可以与广角视觉系统一起使用。使用该设备的研究包括对飞行显示器(地形描绘合成视觉 PFD/HUD、辅助地形显示器、NEXRAD 显示器、抬头和俯视飞行引导空中高速公路显示器、主姿态指示器和备用姿态指示器、附加或便携式导航显示器)的调查、飞行控制(常规和电传性能控制)、故障期间的飞行员表现(自动驾驶仪、俯仰配平、ADI 故障导致部分面板、从异常姿态中恢复)和飞行员决策(使用天气显示器和/或信息来避免恶劣天气)的调查。数据收集功能包括飞行性能、视频和音频数据的数字捕获。
孟买,2024年1月11日:印度领先的SUV制造商Mahindra&Mahindra Ltd.今天宣布推出XUV400 Pro系列,以154.9亿卢比的介绍价格开始。最新的Pro系列介绍了三个新变体:EC Pro(34.5 kWh电池,3.3 kW AC充电器),EL Pro(34.5 kWh电池,7.2 kW AC Charger)和El Pro(39.4 kWh电池,7.2 kW AC Charger),每个提供高级功能和增强的舒适性。先进的技术和增强舒适度:XUV400 Pro系列的座舱配备了先进的技术,包括26.04厘米的信息娱乐系统和26.04厘米的仪表盘,设计用于现代连接和易用性。为此,肾上腺素连接的汽车系统:提供50多个连接功能将进一步增强驾驶安全性,所有权经验和整体车辆功能。此外,Pro系列将提供高架舱室体验,并具有双区域自动温度控制,并由专用的后空气通风孔补充,以确保为所有乘客提供始终如一的舒适环境。无线充电器和后USB端口的便利性将帮助乘客在移动中保持连接。全电动SUV将通过引入无线Android Auto和Apple CarPlay功能进一步增强其技术能力,该功能将在未来几个月通过过度的空中固件更新提供。这种增强功能以及Alexa兼容性,有望提供轻松的导航和用户友好的驾驶体验。
特点 传感器能力、综合航空电子设备、态势感知和先进武器的结合,为所有敌人提供了先发制人、率先击杀的机会。F-22 拥有先进的传感器套件,使飞行员能够在被发现之前跟踪、识别、射击和摧毁空对空威胁。座舱设计和传感器融合的重大进步提高了飞行员的态势感知能力。在空对空配置下,F-22 猛禽携带六枚 AIM-120 AMRAAM 和两枚 AIM-9 响尾蛇导弹。F-22 还具有攻击地面目标的先进能力。在空对地配置下,飞机可内部携带两枚 1,000 磅的 GBU-32 联合直接攻击弹药,并将使用机载航空电子设备进行导航和武器投送支持。低可探测技术的进步提高了针对空对空和地对空威胁的生存力和杀伤力。 F-22 还为战斗带来了先进的隐形技术,使其能够保护自己,几乎不会被敌方雷达发现。双 F-22 发动机产生的推力比任何现有战斗机发动机都要大。流畅的空气动力学设计和增加的推力相结合,使 F-22 能够在不使用加力燃烧器的情况下以超音速(大于 1.5 马赫)巡航 - 这一特性称为超级巡航。超级巡航大大扩展了 F-22 在速度和航程方面的操作范围,超过必须使用加力燃烧器的其他作战战斗机
电动汽车(电动汽车)中座舱对电池选项卡的激光焊接至关重要。确保焊接质量至关重要,因为它取决于诸如孔隙率的产生,熔融池中的流体流动,施加激光功率和焊接速度等因素。然而,常规激光焊接技术主要侧重于沿焊接距离调节激光参数,努力有效地减轻孔隙率的形成。虽然对激光角沿焊缝截面的效应进行了广泛的研究,但尚未探索过轴轴激光角的影响,即在垂直于焊接方向的平面中的角度的效果,尚未探索。这项研究通过在不同激光能密度下改变激光轴轴的角度,以优化专门为减少孔隙率的过程,从而引入了一种创新的激光焊接方法。通过实施铝AA1050的激光焊接的三维计算流体动力学(CFD)模型,我们在采用不同的离轴角度的同时提供了详细的分析流体流量和熔体池尺寸。我们的模型结合了多种反射,向上的蒸气压和后坐压力,以解释不同激光轴轴轴的孔隙率的形成。结果表明,在优化的激光功率和焊接速度下增加激光轴的角度可显着降低孔隙率。在激光外轴角为4.92°时,数值分析与实验熔体池宽度为11%,最小误差为2.74°,最小误差为2.6%。对于熔体池深度,在4.92°的离轴角度为4.2%,最小差为7.2%,在7.42°的离轴角度下的最小差为0.5%。本研究提出了一种通过解决孔隙形成的特定挑战来改善激光焊接过程的新方法。
Lancair 由 Lance Neibauer 于 1984 年创立,现已成为世界上最成功的套件制造商之一。该公司制造了多种套件飞机,包括 Lancair ES 和 Super ES,以及世界上速度最快的活塞式飞机 Lancair IV 和 IV-P。Lancair 飞机保持着多项世界速度记录,并在大多数主要越野飞行比赛中夺得冠军。1999 年 7 月,Legacy 2000 作为 Lancair 320/360 的继任者推出。Legacy 提供了额外的乘客和行李空间,并且比之前的 Lancair 360 性能更高。使用 310 马力的 Continental IO-550-N,Legacy 在 8000 英尺的高度可实现超过 276 英里/小时的巡航速度。2001 年 9 月,Lancair International 试飞了涡轮发动机驱动的 Lancair IV-P。Lancair 现在推出了其最新版本的涡轮发动机:Lancair Sentry。这款 Walter 驱动的 Lancair IV 是一款军用风格的双座飞机,带有左侧油门控制装置和后铰链座舱。“这架飞机的性能与现有的 Propjet 模型非常相似,巡航速度几乎达到 400 英里/小时!“这款新的 Lancair 套件不仅能产生与 IV-P Propjet 型号类似的令人热血沸腾的速度,而且还能通过新设计的后铰链顶篷提供更高的偏航稳定性和出色的可视性。有关所有 Lancair 飞机的更多信息,请联系:LANCAIR INTERNATIONAL 2244 Airport Way, Redmond, OR 97756 电话:(541) 923-2244。www.lancair.com
电动汽车(电动汽车)中座舱对电池选项卡的激光焊接至关重要。确保焊接质量至关重要,因为它取决于诸如孔隙率的产生,熔融池中的流体流动,施加激光功率和焊接速度等因素。然而,常规激光焊接技术主要侧重于沿焊接距离调节激光参数,努力有效地减轻孔隙率的形成。虽然对激光角沿焊缝截面的效应进行了广泛的研究,但尚未探索过轴轴激光角的影响,即在垂直于焊接方向的平面中的角度的效果,尚未探索。这项研究通过在不同激光能密度下改变激光轴轴的角度,以优化专门为减少孔隙率的过程,从而引入了一种创新的激光焊接方法。通过实施铝AA1050的激光焊接的三维计算流体动力学(CFD)模型,我们在采用不同的离轴角度的同时提供了详细的分析流体流量和熔体池尺寸。我们的模型结合了多种反射,向上的蒸气压和后坐压力,以解释不同激光轴轴轴的孔隙率的形成。结果表明,在优化的激光功率和焊接速度下增加激光轴的角度可显着降低孔隙率。在激光外轴角为4.92°时,数值分析与实验熔体池宽度为11%,最小误差为2.74°,最小误差为2.6%。对于熔体池深度,在4.92°的离轴角度为4.2%,最小差为7.2%,在7.42°的离轴角度下的最小差为0.5%。本研究提出了一种通过解决孔隙形成的特定挑战来改善激光焊接过程的新方法。
● Valeo 和 Seeing Machines 达成战略合作,以扩大汽车市场份额 ● Seeing Machines 收购 Valeo 旗下的德国软件公司 Asaphus ● 收购 Asaphus 为 Seeing Machines 提供了独特的 IP、柏林办事处以及人工智能和机器学习能力的实质性提升 ● Asaphus 目前从事三个正在进行的汽车项目 ● 预计收购在运营基础上不会对现金产生影响 Valeo 市场领先的规模、在高质量摄像头和处理单元(硬件)、软件和系统集成方面的专业知识将补充 Seeing Machines 在驾驶员和乘员监控系统技术方面的领导地位。他们将共同在全球汽车行业寻求机会,以满足 OEM 对客户增强内部座舱体验日益增长的需求,同时满足世界各地重要且不断扩大的安全法规,包括现有的欧洲和中国安全法规。此外,Valeo 将把其驾驶员监控感知系统软件活动转让给 Seeing Machines。这主要得益于 Seeing Machines 收购 Asaphus,Asaphus 是 Valeo 旗下的一家德国公司,总部位于柏林,致力于开发驾驶员和乘员监控软件。与 Valeo 的合作以及对 Asaphus 的收购为 Seeing Machines 提供了一个极具吸引力的机会,通过获得高价值的额外知识产权来加强其核心业务。此外,此次收购将增加互补技能,从而以先进的 AI 和 ML 能力加速公司的功能路线图,优化开发成本并在德国提供更强大的工程人才,而德国是支持 Seeing Machines 在欧洲不断增长的客户群的理想地点。
Lancair 由 Lance Neibauer 于 1984 年创立,现已成为世界上最成功的套件制造商之一。该公司制造了多种套件飞机,包括 Lancair ES 和 Super ES,以及世界上速度最快的活塞驱动飞机 Lancair IV 和 IV-P。Lancair 飞机保持着多项世界速度记录,并在大多数主要越野飞行比赛中夺得冠军。1999 年 7 月,Legacy 2000 作为 Lancair 320/360 的继任者推出。Legacy 提供了额外的乘客和行李空间,并且比之前的 Lancair 360 性能更高。使用 310 马力的 Continental IO-550-N,Legacy 在 8000 英尺的高度可实现超过 276 英里/小时的巡航速度。2001 年 9 月,Lancair International 试飞了涡轮发动机驱动的 Lancair IV-P。Lancair 现在推出了其最新版本的涡轮发动机:Lancair Sentry。这款 Walter 驱动的 Lancair IV 是一款军用风格的双座飞机,带有左侧油门控制装置和后铰链座舱。“这架飞机的性能与现有的 Propjet 模型非常相似,巡航速度几乎达到 400 英里/小时!“这款新的 Lancair 套件不仅能产生与 IV-P Propjet 型号类似的令人热血沸腾的速度,而且还能通过新设计的后铰链顶篷提供更高的偏航稳定性和出色的可视性。有关所有 Lancair 飞机的更多信息,请联系:LANCAIR INTERNATIONAL 2244 Airport Way, Redmond, OR 97756 电话:(541) 923-2244。www.lancair.com
摘要本文讨论了数字时代木结构建筑设计的可能性。本文的第一部分将基于材料的设计作为塑造自由形式对象的新方法。问题在于,新的地理要求需要新的材料或新的著名建筑材料和结构的方法。缺乏合适的材料来构建曲线自由形式表面,导致以新的方式使用了传统材料。第二部分描述了曲线木制形式的设计和制造的历史技术。将它们与数字构造学作为建筑设计中的新方法进行了比较。从历史上看,建筑师和木匠使用了立体切割方法和制造的非标准木质元素(例如吉他座舱和阳台),考虑到材料的固有特性。数字CAD/CAM技术从根本上改变了建筑和工程设计的概念方法。使用数字参数工具创建的建筑形式是根据几何形状,材料属性和生产方式来考虑的。诸如圣莫里茨(瑞士)的Chesa Futura和科隆(德国)的Weltstadthaus之类的著名建筑物作为木制建筑中数字构造设计的模型示例。在讨论中,本文介绍了木材建筑的优势。新一代的高性能木材材料提供了独特的建筑可能性。数字时代导致将传统构造学转变为根据数字设计和制造工具原理形状的构建逻辑运行的数字构造学。CAD/CAM系统是数字构造方法的基本公式,它揭示了木材作为天然物质的固有特性。
Opmobility在德克萨斯州奥斯汀(Austin)开设了其新的模块组装工厂,以解决美国关键的电动移动性参与者的历史秩序。建于六个月后,该工厂自9月开始就已经生产了100,000个模块。这将很快成为该集团最大的工厂。该奥斯汀工厂的年度组装能力为250万个模块(150万个前端模块和100万个驾驶舱模块),到2025年将雇用400多名员工。随着新工厂的就职典礼,所有OpMobility的业务集团(外部,C -Power,模块,照明和H 2 -Power)现在在美国拥有一个存在,在美国,Opmobility已经在未来五年内产生了接近其收入的15%,这一数字已预测到两倍。德克萨斯工厂计划将其活动扩展到后挡板等外部部位的生产。opMobility在组装高度复杂的模块所需的开发,组装和后勤方面提供了世界领先的专业知识,使其汽车制造商客户能够简化其生产流程。位于车辆前端,前端模块最多包含140个独立的组件以及诸如车辆照明系统和发动机冷却之类的住房功能。座舱模块是复杂的组件,其中包含车辆仪表板的所有组件(屏幕,饰面面板等)。Opmobility首席执行官Laurent Favre宣布:“我们很高兴在美国的第一个模块组装工厂开幕。这意味着Opmobility现在经营13种植物,反映了我们在该国不断增长的订单书。新工厂也是我们客户群多元化策略与纯电动汽车玩家合作的具体例子。”模块业务集团产生了Opmobility 2023收入的27%该小组每年在全球范围内组装约600万个模块。