主要成果:此次合作预计将促成以下成果:1)协助当局确定和改善循环经济、固体废物管理和可再生能源在监管和实践框架中的整合,加强省级循环经济、废物管理和能源政策和行动计划的实施;2)在现有和改进的框架条件下,对两岛循环经济、固体废物管理和废物转化为能源发展的潜力和预可行性进行评估;3)支持和促进私营部门利益相关者参与龙目岛和廖内岛废物转化为能源的融资机会。支持理由:该项目是印度尼西亚现有环境和能源合作的延伸,将由丹麦环境保护署 (DEPA) 和丹麦能源署 (DEA) 联合实施。印度尼西亚面临着重大挑战,既要确保有效处理越来越多的固体废物,又要确保发电能力的持续增长符合向更多可再生能源过渡的目标。印度尼西亚的许多岛屿都经历了经济的快速增长、城市化和消费模式的不断变化,这给确保足够的可负担能源容量以及固体废物管理带来了压力。废物转化为能源可以成为减少未经处理的固体废物的一种手段,同时也是可再生能源的来源。丹麦能源局主要负责与能源生产、供应和消费相关的任务,以及丹麦减少碳排放的努力,因此在这方面有丰富的经验可以与印度尼西亚分享。可持续岛屿倡议将为可持续发展目标 6、7、11、13 和 17 做出贡献。主要风险和挑战:从地方框架到实际实施,缺乏政治承诺和经济优先权的风险很大。其他主要风险包括缺乏连贯的计划,没有明确的优先事项,人员配备不足,以及为实施计划和所需活动而分配的公共资金不足。这些风险将通过对话和技术援助来解决。调动来自不同来源和机制的私人和公共资金对于减轻风险非常重要。
印度尼西亚/新加坡,2024 年 9 月 5 日:道达尔能源和 RGE 通过其合资企业 Singa Renewables Pte Ltd(“Singa”)获得新加坡能源市场管理局(“EMA”)的有条件批准,可从印度尼西亚向新加坡进口 1.0 吉瓦(“GW”)可靠的太阳能光伏(“PV”)能源。新加坡人力部长兼贸易与工业部第二部长陈诗龙博士于 2024 年 9 月 5 日在雅加达举行的 2024 年印度尼西亚国际可持续发展论坛上宣布了这项有条件批准。这项批准标志着加强区域能源合作和推进东南亚可再生能源计划的重要一步。该项目将利用印度尼西亚丰富的太阳能资源生产清洁能源,然后出口到新加坡,为其可持续发展目标做出贡献。此外,Singa 将为印度尼西亚国内消费提供太阳能光伏能源,为印度尼西亚廖内省的绿色工业园区供电。这将支持印尼的计划,即到 2050 年将可再生能源部署率从 2023 年的 13% 提高到 31%1,到 2060 年实现净零排放。道达尔能源可再生能源高级副总裁 Olivier Jouny 表示:“道达尔能源很高兴与金鹰集团合作,为新加坡和印尼的能源转型目标做出贡献。该项目符合道达尔能源的综合电力战略,该战略旨在通过企业购电协议,通过太阳能和电池储能系统的组合向企业客户提供清洁稳定的电力。”金鹰集团全球可再生能源主管 William Goh 补充道:“我们与道达尔能源一起,旨在为印尼和新加坡提供双赢的解决方案,向两国供应绿色电力,实现能源供应脱碳,实现能源转型目标。同时,我们的项目可以促进太阳能领域的进一步投资和就业,并为印尼太阳能供应链的发展做出贡献。”
VS 阿卡托夫 俄罗斯科学院理论与实验生物物理研究所(普希诺) VP 巴克拉舍夫 俄罗斯联邦科学与临床中心、FMBA(莫斯科) AS 布留霍维茨基 俄罗斯科学院中央临床医院(莫斯科) RK 柴拉基扬 NF 加马列亚 流行病学和微生物学研究所(莫斯科) IA 切克马列娃 AV 维什涅夫斯基 外科研究所(莫斯科) VS 奇尔斯基 SM 基洛夫军事医学院(圣彼得堡) GD 达尔加托夫 俄罗斯联邦耳鼻咽喉科学临床中心、FMBA(莫斯科) MI 达维多夫(莫斯科) AA 俄罗斯科学院多克托罗夫 生物医学技术研究与培训中心 RRIMAP(莫斯科) PA 戴班 实验医学科学研究所,(圣彼得堡) TH 法图迪诺夫 人体形态学研究所(莫斯科) VG 戈洛洛博夫 SM 基洛夫军事医学院(圣彼得堡) YP 格里布诺夫 俄罗斯联邦总统工商管理中央临床医院及门诊健康中心(莫斯科) AA 古梅罗娃 喀山(伏尔加河地区) 联邦大学(喀山) RE 加里宁 IP 巴甫洛夫 梁赞国立医科大学(梁赞) AP 基亚索夫 喀山(伏尔加河地区) 联邦大学(喀山) SL 基谢廖夫 NI 瓦维洛夫 俄罗斯科学院普通遗传学研究所(莫斯科) KV 科滕科 BV 彼得罗夫斯基 俄罗斯外科研究中心(莫斯科) VA 科兹洛夫 临床免疫学研究所(新西伯利亚) A. 库利耶夫 佛罗里达国际大学(美国迈阿密) AV 库利科夫 俄罗斯科学院理论与实验生物物理研究所(普希奇诺) VS 科姆列夫 AA 巴伊科夫 俄罗斯科学院冶金与材料科学研究所(莫斯科)
通过由第七框架计划 (FP7-ENV- 2012 编号 308429) 资助的 WeSenseIt 研究项目 (http://staffwww.dcs.shef.ac.uk/people/F.Ciravegna/wsi-site/wesenseit.eu/index.html,最后访问时间:2020 年 12 月 2 日),我们与意大利北部的上亚得里亚海盆地管理局合作制定了洪水风险管理合作计划。该合作计划的目的是收集公民在实地的观察结果,并在洪水事件发生前和期间更广泛、更迅速地了解事态发展。该合作计划涉及许多利益相关者,他们关注巴奇廖内河流域的水资源管理和使用以及与水有关的危害。主要参与者包括地方市政当局、区域和地方民防机构、环境机构和灌溉当局。阿尔托阿德里亚蒂科水务局 (AAWA) 为受过严格训练的公民观察员群体(即民防志愿者)提供了便利,他们作为志愿者活动的一部分进行观察(即使用带有二维码的标尺测量水位并报告水道障碍物;见图 1)。项目期间还从意大利红十字会、国家阿尔卑斯山骑兵协会、意大利陆军警察和其他民防组织招募了其他志愿者,共有 200 多名志愿者参加了 CO 试点项目。为志愿者组织了培训课程,以传播和解释智能手机应用程序和电子协作平台的使用,这些应用程序和平台是作为 WeSenseIt 项目的一部分开发的。除了低成本的传感设备外,CO 还使用了物理传感器的数据,这些传感器由 AAWA 与区域土壤保护部、环境保护局和民防局合作运营,包括:三个声纳传感器(河流水位)、四个气象站(风速和风向、降水量、气温和湿度)和五个土壤湿度传感器。传感器的组合可视化(包括威尼斯环境局现有的传感器)可在在线电子协作平台上获得。在 WeSenseIt 项目期间,研究了众包数据对水文建模的价值(Mazzoleni 等人,2017 年、2018 年),发现它可以补充传统的传感器网络。该试点后来被欧洲共同体采纳为应用 2007/60/EC 指令的“良好实践”示例。在 WeSenseIt 获得积极经验后,欧洲共同体提供了资金来开发洪水风险 CO
近年来,超连续光源和各种新型光纤或波导的超高灵敏度得到了广泛的研究,结合光纤低损耗传输、抗电磁干扰等独特性能,发展了各种光子调制和集成的全光传感器件,为平面波导与光纤波导的集成提供了可能的技术途径( Kosiel et al.,2018 )。得益于新型智能材料、纳米加工技术和光谱分析技术的发展,人们开发了许多智能、高性能的光波导器件或光纤传感器,其中,智能聚合物、金属、金属氧化物和半导体材料已被用于制作光纤传感器或作为敏感材料,有效提高了灵敏度和选择性能( Yuan et al.,2019 )。这一改进是通过修改不同的光纤结构实现的,例如微光纤、纳米光纤、光纤尖端微/纳米结构、多模干涉光纤结构和直列光纤结构。微/纳米尺度的光纤传感器已经与微流控器件和平面光子结构集成以开发全光学芯片,从而实现传感信号的高速采集、传输和处理。由于光纤传感器被封装在柔性材料中,它们将成为可穿戴或植入式设备的有希望的候选者。将微/纳米纤维的优异性能(超高倏逝场)与这些传感器中使用的新型纳米材料(高比表面积和催化活性)相结合,开发出许多性能优异的集成光学传感器。在本研究主题中,报道了基于新型智能材料的光纤传感器的结构设计、器件制备和传感性能优化的模型模拟和实验研究的最新研究工作。光学微纳光纤和微纳结构的灵活设计与精确控制是发展先进光子器件和新型传感器的重要支撑,也被称作“光纤实验室”( Zhou et al., 2019 )。廖博士等在题为“双光子聚合诱导的光纤集成功能微纳结构”的论文中回顾和讨论了近10年来双光子聚合诱导的光纤集成微纳结构领域的研究进展。利用激光微加工、聚焦离子束铣削和纳米压印技术,在光纤端面制作出超小型、微型微光学元件、光波导器件和光学微腔,分辨率小于100纳米。将“双光子聚合”技术与新的加工方法或材料相结合,新的功能结构一直致力于开发新型纳米光子学设备,例如光纤实验室。
职位空缺公告 编号:020 项目:绿色就业促进社会包容和可持续转型(GESIT) 职位:地方绿色就业促进顾问 地点:雅加达 预计加入时间:尽快 汇报对象:绿色就业政策和伙伴关系团队负责人 关于 GIZ 德国国际合作机构 (GIZ) GmbH 是一家代表德国政府开展全球业务的国际可持续发展合作企业。我们致力于塑造全球 120 多个国家值得生活的未来。 关于项目 GESIT 项目是全球气候危机综合解决方案的一部分,由众多印尼-德国合作项目组成,这些项目利用能源转型、弹性自然以及绿色和循环经济领域的协同作用。通过促进绿色就业中的包容性就业,GESIT 为印度尼西亚经济的公正转型和脱碳做出了贡献。印尼政府已将向绿色经济转型(一种具有国际竞争力、环境可持续性和社会包容性的经济)作为一项核心战略,以促进经济持续高速增长并实现“印尼 2045 愿景”,该愿景着眼于使印尼成为高收入国家。然而,目前印尼缺乏足够熟练的劳动力,无法充分利用绿色经济增长带来的就业潜力。印尼-德国技术合作项目“绿色就业促进社会包容和可持续转型 (GESIT)”旨在解决印尼劳动力市场和技术与职业教育与培训 (TVET) 系统对绿色经济转型的影响的认识仍然不足的问题,以及促进绿色就业的缺失方法和手段。该项目旨在使选定的公共和私人利益相关者能够包容性地促进绿色就业。项目通过以下四个干预领域实现这一目标:(1)改善政策框架和私营部门参与,以促进国家层面的绿色就业;(2)试行包容性方法,提高绿色就业技能和再培训;(3)促进地方层面的绿色就业;(4)支持绿色就业发展的协调和监测。所有干预领域都将侧重于可再生能源和能源效率、森林和循环经济领域,为印尼-德国发展合作的优先领域做出贡献。干预领域(3)的三个试点省份是东爪哇、东加里曼丹和廖内群岛。该项目的政治对应方是国家发展规划部(Bappenas)劳工和就业局。因此,GESIT 项目正在为以下职位招募一名印度尼西亚候选人:
1.Mengda He、Qinggang Zhang、Francesco Carulli、Andrea Erroi、Weiyu Wei、Long Kong、Changwei Yuan、Qun Wan、明明刘、Xinrong Liao、Wenji Zhan、Lei Han、XiaojunGuo、Sergio Brovelli、Liang Li*,用于 μ-LED 中高效颜色转换的超稳定、可溶液加工的 CsPbBr3-SiO2 纳米球,ACS Energy Lett。 2023, 8, 151–158 2. Matteo L. Zaffalon、Francesca Cova、刘明明、Alessia Cemmi、Ilaria Di、Sarcina、Francesca Rossi、Francesco Carulli1、Andrea Erroi1、Carmelita Rodà、Jacopo Perego、Angi olina Comotti、Mauro Fasoli、Francesco Meinardi、Liang Li *、Anna Vedda*, Sergio Brov elli* 钙钛矿纳米晶体中的极高 γ 射线辐射硬度和高闪烁产率,《自然光子学》,2022, 16, 860–868。 3. 张清刚,刘世强,何孟达,郑伟林,万群,刘明明,廖新荣,詹文吉,袁昌伟,刘金宇,谢海娇,郭晓军,龙龙*,梁丽 * 通过抑制锡(II)氧化,稳定无铅卤化锡钙钛矿,运行稳定性>1200小时,Angewandte化学国际版,2022,61,e2022054。 4.青钢。张孟达.何,万群,郑伟林,刘敏敏,从阳。 Zhang, Xin rong Liao, Wenji Zhan, Long Kong, Xiaojun Guo, Liang Li* , 通过构建宽带隙表面层抑制铅卤化物钙钛矿纳米晶体的热猝灭以实现热稳定的白光发光二极管, Chemical Science 2022, 13 3719- 3727。 5. Congyang Zhang, Qun Wan, Luis K Ono, Yuqiang Liu, Weilin Zheng, Qinggang Zhang, Mingming Liu, Long Kong, Liang Li*, Yabing Qi*, “基于稳定的铯铅氯化钙钛矿纳米晶体的窄带紫光发光二极管” ACS Energy Lett 。 2021,6,3545-355。 6. Mingming Liu, Qun Wan, Huamiao Wang, Francesco Carulli, Xiaochuan Sun, Weilin Zhe ng, Long Kong, Qi Zhang, Congyang Zhang, Qinggang Zhang, Sergio Brovelli*, Liang Li *, 抑制钙钛矿纳米晶体的温度猝灭以实现高效和热稳定的发光二极管, Nature Photonics , 2021, 15, 379–385. 7. Congyang Zhang, Wanbin Li, Liang Li ∗ , 金属卤化物钙钛矿纳米晶体在金属
[3] LIBOWITZ MR,WEI K,TRAN T,et al.Regional brain volumes relate to Alzheimer's disease cerebrospinal fluid biomarkers and neuropsychometry:A cross-sectional,observational study[J].PLoS One,2021,16(7):e0254332.[4] 王含春 , 汪群芳 , 罗长国 , 等 .磁共振薄层扫描结合人工智能脑结构分割技术分析海马体积辅 助诊断脑小血管病认知功能障碍 [J].全科医学临床与教育 ,2024,22(3):208-211.[5] 姜华 , 宛丰 , 吕衍文 , 等 .2 型糖尿病伴认知功能障碍患者基于体素的脑形态学 MRI 研究 [J].中 国 CT 和 MRI 杂志 ,2018,16(4):22-25.[6] 景赟杭 , 郭瑞 , 常轲 , 等 .2 型糖尿病性认知功能障碍脑结构 MRI 成像研究进展 [J].延安大学学 报(医学科学版) ,2024,22(1):88-91,107.[7] 郭浩 , 和荣丽 .磁共振成像对老年性痴呆患者海马解剖结构的评估价值研究 [J].磁共振成 像 ,2022,13(8):75-79.[8] 罗财妹 , 李梦春 , 秦若梦 , 等 .阿尔茨海默病谱系患者的海马亚区体积损害特征 [J].中风与神经 疾病杂志 ,2019,36(12):1097-1101.[9] 冯伦伦 , 金蓉 , 曹城浩 , 等 .阿尔茨海默病患者认知功能减退的海马亚区结构改变分析 [J].临床 放射学杂志 ,2022,41(10):1819-1824.[10] WEI Y,HUANG N,LIU Y,et al.Hippocampal and Amygdalar Morpho logical Abnormalities in Alzheimer,s Disease Based on Three Chinese MRI Datasets[J].Curr Alzheimer Res,2020,17:1221-1231 . [11] ESTEVEZ S S,JIMENEZ H A,ADNI G.Comparative analy sis of methods of volume adjustment in hippocampal volumetry for the diagnosis of Alzheimer disease[J].Neuroradiol,2020;47(2):161-5.[12] 曾利川 , 王林 , 廖华强 , 等 .结构与功能磁共振成像在轻度认知障碍及阿尔茨海默病中的应 用 [J].中国老年学杂志 ,2021,41(13):2902-2907.[13] KODAM P,SAI S R,PRADHAN S S,et al.Integrated multi-omics analysis of Alzheimer's disease shows molecular signatures associated with disease progression and potential therapeutic targets[J].Sci Rep,2023,13(1):3695.[14] 黄建 , 王志 .复杂网络分析技术在阿尔兹海默症患者脑结构和功能影像中的应用进展 [J].中 国医学物理学杂志 ,2024,41(8):1053-1055.[15] JELLINGER K A.The pathobiological basis of depression in Parkinson disease:challenges and outlooks[J].J Neural Transm(Vienna),2022,129(12):1397-1418.[16] BANWINKLER M,THEIS H,PRANGE S,et al.Imaging the limbic system in Parkinson's disease-A review of limbic pathology and clinical symptoms[J].Brain Sci,2022,12(9):1248.[17] 程秀 , 张鹏飞 , 王俊 , 等 .小脑结构与功能磁共振成像在帕金森病中的研究进展 [J].磁共振成 像 ,2022,13(4):146-149.[18] CUI X,LI L,YU L,et al.Gray Matter Atrophy in Parkinson's Disease and the Parkinsonian Variant of Multiple System Atrophy:A Combined ROI-and Voxel-Based Morphometric Study[J].Clinics(Sao Paulo),2020,75:e1505.[19] LOPEZ A M,TRUJILLO P,HERNANDEZ A B,et al.Structural Correlates of the Sensorimotor Cerebellum in Parkinson's Disease and Essential Tremor[J].Mov Disord,2020,35(7):1181-1188.[20] 鲍奕清 , 王二磊 , 邹楠 , 等 .帕金森病伴疲劳患者的大脑功能与结构磁共振成像研究 [J].临床 放射学杂志 ,2024,43(8):1265-1270.[21] 邹楠 , 王二磊 , 张金茹 , 等 .帕金森病伴疼痛患者大脑皮层厚度改变的结构 MRI 研究 [J].磁共 振成像 ,2024,15(5):13-18,23.[22] 屈明睿 , 高冰冰 , 苗延巍 .帕金森病伴抑郁在脑边缘系统结构及功能改变的 MRI 研究进展 [J].磁共振成像 ,2023,14(12): 127-131.
艾哈迈德讷格尔 : Shri RA Shaikh,车辆研究与发展机构 (VRDE) 昌迪普尔 : Shri PN Panda,综合试验场 (ITR) Shri Ratnakar S,Mohapatra,P 屋顶与实验机构 (PXE) 班加罗尔 : Shri Satpal Singh Tomar,航空发展机构 (ADE) Smt MR Bhuvaneswari,机载系统中心 (CABS) Smt Faheema AGJ,人工智能与机器人中心 (CAIR) Dr Josephine Nirmala M,战斗机系统发展与集成中心 (CASDIC) Dr Sanchita Sil 和 Dr Sudhir S Kamble,国防生物工程与电医学实验室 (DEBEL) Dr V Senthil,燃气轮机研究机构 (GTRE) Shri Venkatesh Prabhu,电子与雷达发展机构 (LRDE) Dr Ashok Bansiwal,微波管研究与发展中心 (MTRDC)昌迪加尔:Pal Dinesh Kumar 博士,终端弹道研究实验室 (TBRL):Anuja Kumari 博士,国防地理信息学研究机构 (DGRE) 金奈:K Anbazhagan 先生,战斗车辆研究与发展机构 (CVRDE) 德拉敦:Abhai Mishra 先生,国防电子应用实验室 (DEAL) JP Singh 先生,仪器研究与发展机构 (IRDE) 德里:Tapesh Sinha 先生,国防科学信息与文献中心 (DESIDOC) Dipti Prasad 博士,国防生理学与相关科学研究所 (DIPAS) Santosh Kumar Choudhury 先生,国防心理研究所 (DIPR) Navin Soni 先生,核医学与相关科学研究所 (INMAS) Rabita Devi 先生,系统研究与分析研究所 (ISSA) Ashok Kumar 先生,科学分析集团(SAG)Rupesh Kumar Choubey 博士,固体物理实验室(SSPL)瓜廖尔:AK Goel 博士,国防研发机构(DRDE)哈尔德瓦尼:Atul Grover 博士,国防生物能源研究所(DIBER)海得拉巴:Hemant Kumar 博士,先进系统实验室(ASL)ARC Murthy 博士,国防电子研究实验室(DLRL)Manoj Kumar Jain 博士,国防冶金研究实验室(DMRL)Lalith Shankar 博士,伊玛拉特研究中心(RCI)贾格达尔普尔:Gaurav Agnihotri 博士,SF 综合设施(SFC)焦特布尔:DK Tripathi 博士,国防实验室(DL)坎普尔:Mohit Katiyar 博士,国防材料与仓储研究与发展机构(DMSRDE)科钦:Smt Letha MM,海军物理与海洋实验室(NPOL)列城 : Dorjey Angchok 博士,国防高海拔研究所 (DIHAR) 马苏里 : Gp Capt RK Mansharamani,技术管理学院 (ITM) 迈索尔 : M Palmurugan 博士,国防食品研究实验室 (DFRL) 浦那 : Shri Ajay K Pandey,军备研究与发展机构 (ARDE) Vijay Pattar 博士,国防先进技术研究所 (DIAT) Ganesh Shankar Dombe 博士,高能材料研究实验室 (HEMRL) 特斯普尔 : KS Nakhuru 博士,国防研究实验室 (DRL) 维沙卡帕特南:Smt Jyotsna Rani,海军科学与技术实验室 (NSTL)
艾哈迈德讷格尔:Col Atul Apte,Shri RA Shaikh,车辆研究与发展机构(VRDE) 安贝尔纳特:Susan Titus 博士,海军材料研究实验室(NMRL) 昌迪普尔:PN Panda,综合试验场(ITR) Ratnakar S,Mohapatra,P 屋顶与实验机构(PXE) 班加罗尔:Satpal Singh Tomar,航空发展机构(ADE) Smt MR Bhuvaneswari,机载系统中心(CABS) Faheema AGJ,人工智能与机器人中心(CAIR) Tripty Rani Bose 女士,军用适航与认证中心(CEMILAC) Josephine Nirmala M 博士,战斗机系统发展与集成中心(CASDIC) Prasanna S Bakshi 博士,国防生物工程与电医学实验室(DEBEL) Venkatesh Prabhu,电子与雷达发展机构(LRDE)Ashok Bansiwal 博士,微波管研究与发展中心(MTRDC)昌迪加尔:Prince Sharma 博士,终端弹道研究实验室(TBRL)金奈:Smt S Jayasudha,战斗车辆研究与发展机构(CVRDE)德拉敦:Shri Abhai Mishra,国防电子应用实验室(DEAL)Shri JP Singh,仪器研究与发展机构(IRDE)德里:Shri Ashutosh Bhatnagar,人事人才管理中心(CEPTAM)Dipti Prasad 博士,国防生理学及相关科学研究所(DIPAS)Dolly Bansal 博士,国防心理研究所(DIPR)Shri Navin Soni,核医学及相关科学研究所(INMAS)Smt Rabita Devi,系统研究与分析研究所(ISSA)Noopur Shrotriya 女士,科学分析组(SAG) Rupesh Kumar Chaubey 博士,固体物理实验室 (SSPL) 瓜廖尔:AK Goel 博士,国防研发机构 (DRDE) 哈尔德瓦尼:Atul Grover 博士,国防生物能源研究所 (DIBER) 海得拉巴:Hemant Kumar 先生,先进系统实验室 (ASL) ARC Murthy 先生,国防电子研究实验室 (DLRL) Manoj Kumar Jain 博士,国防冶金研究实验室 (DMRL) Lalith Shankar 先生,伊玛拉特研究中心 (RCI) 贾格达尔普尔:Gaurav Agnihotri 博士,SF 综合设施 (SFC) 焦特布尔:Ravindra Kumar 先生,国防实验室 (DL) 坎普尔:AK Singh 先生,国防材料与仓储研究与开发机构 (DMSRDE) 科钦:Smt Letha MM,海军物理与海洋实验室 (NPOL)列城 : Dorjey Angchok 博士,国防高海拔研究所 (DIHAR) 马苏里 : Gopa B Choudhury 博士,技术管理学院 (ITM) 迈索尔 : M Palmurugan 博士,国防食品研究实验室 (DFRL) 浦那 : JA Kanetkar 博士 (Mrs),军备研究与发展机构 (ARDE) Vijay Pattar 博士,国防先进技术研究所 (DIAT) Shri S Nandagopal,高能材料研究实验室 (HEMRL) 特斯普尔 : Jayshree Das 博士,国防研究实验室 (DRL) 维沙卡帕特南:Smt Jyotsna Rani,海军科学与技术实验室 (NSTL)