在 Largo Resources,我们通过使用我们的高品质 VPURE™ 和 VPURE+™ 钒产品,为全球脱碳和减少排放做出贡献,对此我们深感自豪。我们的 VPURE™ 和 VPURE+™ 产品用于制造钒铁和中间合金。钒铁(铁和钒的组合)因其耐腐蚀性、强度和延展性而被充分利用,可用于生产高强度低合金(“HSLA”)钢和钢筋,有助于减少整个钢铁价值链的二氧化碳排放。据估计,2017 年,在 HSLA 钢和钢筋应用中使用钒铁可在全球范围内节省近 1.37 亿吨二氧化碳,相当于种植约 2.6 亿棵树。1
Tedlar ® 薄膜厚度各异,可贴合在金属等多种材料上。与油漆涂层等薄膜材料相比,Tedlar ® 由 100% 荧光素 PVF 制成,具有独特的性能,包括优异的耐候性、延展性、耐久性、物理稳定性以及对多种化学品、溶剂、污染物和腐蚀剂的抵抗力。此外,Tedlar ® 薄膜不含丙烯酸等增塑剂,具有出色的耐老化性,在很宽的温度范围内保持韧性和柔韧性。其致密的薄膜表面易于清洁、不反应且惰性,耐污、防火,不易褪色、粉化和开裂,安全环保,是各种行业和应用的理想选择。
摘要:缺陷和微观结构对TI-6AL-4V焊缝的机械性能的影响;等离子体电弧焊接;电子梁焊接;在目前的工作中研究了激光束焊接。评估了微硬度的不同焊接类型的机械性能;产量强度;最终的拉伸强度;延性以及在室温和升高温度下(200℃和250℃)的疲劳。的晶体学对不同焊接类型的微观结构进行表征,并进行了分裂研究以将缺陷对疲劳性能的影响联系起来。电子和激光束焊接比钨惰性气体焊接和等离子体弧焊接产生的微结构,更高的拉伸延展性和更好的疲劳性能。大毛孔和靠近标本表面的孔最不利于疲劳寿命。
塑性范围内带开口板的行为。.................1.理论弹性应力分布。.2.带开口的板中的塑性应力分布。..............3.带开口的板中的塑性能值分布。...............4.试验温度对塑性应力和能量分布的影响 .5.断裂起始条件。6.开孔形状对开孔板性能的影响 7.配筋率对开孔板性能的影响.............8.钢筋几何形状对开孔板性能的影响 ...........9.开孔板的整体延展性 ...............10.带开口板的效率 ..11.带开口板的断裂模式 .
陶瓷是一种脆性材料,具有高导热性和导电性,而陶瓷易碎、导电性差。然而,大多数陶瓷即使在高温下也表现出高刚度和稳定性,而大多数金属材料即使在中温下使用寿命也有限。在高温下,金属会发生微观结构变化和机械性能劣化。最常见的MMC类型是将陶瓷加入金属基体中。陶瓷增强金属复合材料预计比单相金属及其合金具有明显的优势。MMC受益于金属基体的延展性和韧性以及陶瓷增强体的高温稳定性、刚度和低热膨胀,可以满足金属和陶瓷都会独立失效的应用所需的性能[9, 10, 12-15]。
在 Primark,我们相信我们的交易业绩证明了我们对所有市场客户的持久吸引力。我们继续投资于现有店面、新店和数字基础设施。我们预计明年销售额将进一步增长,这得益于约 100 万平方英尺的新销售面积扩张和适度的同店销售额增长。这种同店增长将由我们的价值主张、我们的产品相关性和延展性、我们日益有效的数字平台和一些有限的定价支撑。较低的材料成本和较低的运费成本应会导致毛利率大幅回升,总体而言,我们预计 Primark 调整后的营业利润率将强劲回升。在这个早期阶段,我们相信调整后的营业利润率将超过 10%,进一步的改善取决于消费者需求水平。
银 用于硬币和奖章、电气和电子设备、工业应用、珠宝、银器和摄影。银的物理特性包括延展性、电子导电性、可锻性和反射性。它用于化学反应容器的内衬桶和其他设备、水蒸馏、乙烯制造、镜子、镀银、餐具、牙科、医疗和科学设备、轴承金属、磁铁绕组、钎焊合金和焊料。它还用于催化转换器、手机外壳、电子产品、电路板、伤口护理绷带和电池。美国有 30 多个贱金属和贵金属矿产银,主要产于阿拉斯加和内华达州。全球主要生产国包括墨西哥、中国、秘鲁和智利。2022 年,美国的银依赖率为 69%。
•钢:钢铁具有既定的鲁棒性,是结构完整性和耐用性的基准,所有子框架材料都应旨在匹配或超越以确保安全性和长期性能。这是一种具有高负载能力的常见材料,其易感性和高热电导率的敏感性,导致潜在的热桥。由于其拉伸强度和固有的延展性而具有螺钉拉力阻力。•GreengirtCMH®(复合金属混合动力):一种高性能的建筑材料,将FRP的耐腐蚀和绝缘性能与连续金属分量提供的结构弹性结合在一起。其独特的组成可确保稳健的螺钉固定。这允许直接使用螺钉,将螺钉挖掘成连续的金属结构支撑,以实现有效和可靠的负载分布。
经典的金属制造和连接涉及两种不同的途径:一条基于熔化和结合;其他利用塑性变形。要用所需的几何形状制造金属组件,配偶工程师可以加热并融化金属,将其倒入具有预定层形状的模具中,然后通过冷却使其在模具中凝固。这是铸造过程[1]。替代,当金属保留在固态中时,可能会将金属按或将金属锤成所需的形状。这是锻造过程[2]。在铸造更能产生较大且复杂的形状时,宽容会导致改善的机械性能,例如更好的延展性,更高的产量和拉伸强度以及较长的疲劳寿命。加入两个金属工件,材料工程师可以使用弧[3],煤气
通过热压粉末混合物,我们制造了三种以氧化铝基体为基础、体积百分比为 20% 的延展性金属(镍或铁)颗粒的复合材料。压痕和双扭转试验均表明,所有复合材料的韧性均高于母体基体,增幅从 22% 到 78% 不等。尽管压痕试验可以指示相对性能,但已概述了使用此方法的问题。对来自不同加工路线的氧化铝-铁样品进行的双扭转试验结果表明了微观结构的重要性。还指出,每种复合材料的最大韧性仅在裂纹长度相对较长(毫米级)时才实现。对裂纹轮廓的检查表明,颗粒-基体界面较弱,界面强度的提高将进一步提高复合材料的韧性。