(○)1。制程中所使用试剂之最终残留量评估方式可使用估算方式。(○)2。制程中有使用人类及动物来源之原物料,须提供生物安全评估说(╳)3。细胞规格不须表列检测项目、检测方法和允收标准。(b)4。细胞治疗技术之主管机关为何?(a)财团法人医药品查验中心(b)卫福部医事司(c)食品药物管理署(d)健保署(a)5。下列何者非附表三开放申请之细胞治疗技术?(a)异体t细胞治疗(b)自体脂肪干细胞治疗(c)自体软骨干细胞治疗(d)自体树突细胞治疗(d)6。申请细胞治疗技术施行计画效期展延时,下列事项何者可一并办(a)品质计画专责人员(b)细胞制备场所名称(c)细胞制备场所所属机构地址(d)以上皆是(c)7。细胞制品规格中之安全性检测为何?(a)细胞数检测(b)细胞存活率检测(c)无菌检测(d)鉴别检测(d)8。细胞制品安定性试验应提供何项资料?(a)安定性试验计划书(b)安定性试验结果(c)检测时程表(d)以上皆是
1998 年 7 月 26 日至 8 月 26 日,使用自动相机在格陵兰岛东部陆地栖息地拍摄海象 (Odobenus rosmarus)(位于 Young Sund,北纬 740 15’ 30”,西经 20° 18’ 00”)。这项研究的目的是 (1) 确定使用延时摄影记录海象栖息地的可行性,以及 (2) 确定格陵兰岛仅有的两个陆地栖息地之一的海象栖息地数量,海象经常在那里上岸。在研究期间,每隔六个小时拍摄一张照片,地点是海象通常上岸的 Sandøen 南端。平均而言,经验丰富的海象观察者通过分析照片获得的数量估计值比经验不足的观察者高 16%。7 月 26 日,研究人员在现场共计计数了 28 只海象,而根据当天晚些时候拍摄的照片估计最多只有 16 只。7 月 29 日的最大数量为 18 只。8 月 5 日之前,上岸的数量大幅减少。目前尚不清楚这种下降是代表自然行为还是对人为干扰的反应。可以推断,使用自动相机对花絮进行登记是可行的,前提是 (1) 相机放置得足够高,以确保可以检测到一群花絮中的所有花絮,并且 (2) 进行一些现场直接计数以验证摄影登记的准确性。
点击此处访问 ISW 的俄罗斯入侵乌克兰的交互式延时地图档案。这些地图通过展示动态前线,补充了 ISW 每天制作的静态地形控制图。ISW 将每月更新此延时地图档案。据报道,有关乌克兰战争的美国机密军事文件被泄露(可能被篡改),俄罗斯军事博主对此表现出猜测性的焦虑,表明俄罗斯信息空间对乌克兰未来反攻的前景仍心存担忧。《纽约时报》4 月 6 日报道称,一系列五周前的美国机密军事文件正在各种社交媒体平台上流传,据报道,这些文件描述了乌克兰军队的作战报告和能力评估。[1] Bellingcat 分析师 Aric Toler 指出,这些文件早在 3 月 4 日就已在网上流传,目前尚不清楚为何这些文件在一个多月后才出现在西方主流媒体上。[2] 俄罗斯 Telegram 频道上还流传着明显经过篡改的文件版本,这些版本减少了俄罗斯的损失,夸大了乌克兰的伤亡人数。无论据报道泄露的文件的真实性如何(ISW 不会对此进行猜测),俄罗斯军事博客作者对《纽约时报》报道的反应凸显了俄罗斯主战信息空间对乌克兰未来反攻的担忧。虽然几位著名的俄罗斯军事博客作者立即否认了这些文件的有效性,并暗示它们是伪造的,但他们坚持认为发布的文件是旨在混淆和误导俄罗斯军事指挥部的虚假信息。[3] 一位军事博主表示,文件泄露可能是乌克兰在反攻前误导俄罗斯军队的更大规模行动的一部分。[4] 另一位俄罗斯军事博主指出,军队在发动突袭前传播虚假计划信息是有历史先例的。[5] 由于文件泄露,这位军事博主敦促读者在讨论乌克兰反攻可能发生的地点时要谨慎。[6] 因此,《纽约时报》的报道揭露了俄罗斯信息领域的一个重要神经痛点,对这些文件的回应表明,俄罗斯军事博主可能越来越多地重新考虑他们对任何潜在乌克兰反攻的评估和猜测的有效性以及他们预测乌克兰行动的能力。克里姆林宫继续表示对合法谈判不感兴趣,并将任何谈判的责任推给西方。俄罗斯外交部长谢尔盖·拉夫罗夫4月7日在土耳其安卡拉举行的新闻发布会上表示,俄罗斯并不拒绝谈判,但谈判只能基于俄罗斯所谓的“合法”利益和关切。[7] 拉夫罗夫声称西方傲慢地“蔑视”俄罗斯的利益。 [8] 克里姆林宫保留了普京对乌克兰战争的最初最高目标,并坚持认为俄罗斯的“合法”利益包括国际社会承认俄罗斯非法吞并乌克兰领土、在俄罗斯“去纳粹化”呼吁下实现基辅政权更迭以及乌克兰“非军事化”。[9] 担心在乌克兰即将发动的反攻中失去更多被占领的乌克兰领土,可能会促使克里姆林宫加强持续的信息传递
摘要:由专门的蛋白质形成的突触蛋白– DNA复合物,在DNA上桥接两个或多个远处的位点,与各种遗传过程至关重要。然而,蛋白质搜索这些位点及其如何将它们结合在一起的分子机制尚不清楚。我们以前的研究直接可视化了SIFI使用的搜索途径,并确定了两种途径,DNA螺纹和站点结合的传输途径,这是突触搜索突触DNA-蛋白系统的现场搜索过程的特定。为了研究这些现场搜索途径背后的分子机制,我们将SIFI的复合物与对应于不同瞬态状态相对应的各种DNA底物组装,并使用单分子荧光方法测量了其稳定性。这些组件对应于特定的特定(突触),非特定特异性(非特殊)和特定的特异性(突触前)SIFNA状态。出乎意料的是,发现与特定和非特异性DNA底物组装的突触复合物的稳定性提高。解释这些令人惊讶的观察结果,一种理论方法,描述了这些复合物的组装并将预测与实验进行了比较。该理论通过利用熵参数来解释这种效果,根据该论点,在部分解离之后,非特定的DNA模板具有重新启动的多种可能性,从而有效地提高了稳定性。与特定和非特异性DNA相稳定性的稳定性差异解释了在延时AFM实验中发现的突触蛋白– DNA复合物的搜索过程中螺纹和位点结合的转移途径的利用。
摘要:由专门的蛋白质形成的突触蛋白-DNA复合物在DNA上桥接两个或更多远处的蛋白质,与各种遗传过程至关重要。然而,蛋白质搜索这些位点及其如何将它们结合在一起的分子机制尚不清楚。我们以前的研究直接可视化了SFII使用的搜索途径,我们确定了两种途径,即DNA螺纹和站点结合的传输途径,特定于突触DNA-蛋白系统的现场搜索过程。为了研究这些位点搜索途径背后的分子机制,我们将SFII的复合物与与不同瞬态状态相对应的各种DNA底物组装在一起,并使用单分子荧光方法测量了其稳定性。这些组件对应于特定特异性(突触),非特异性非特异性(非特异性)和特定的非特异性(突触前)SFII-DNA状态。出乎意料的是,已经发现了与特异性和非特异性DNA底物组装的突触前复合物的稳定性升高。解释了这些令人惊讶的观察,一种理论方法描述了这些复合物的组装并将预测与实验进行比较。该理论通过利用熵参数来解释这种效果,根据该论点,在部分解离之后,非特异性DNA模板具有重新启动的多种可能性,从而有效地提高了稳定性。与特定和非特异性DNA的SFII复合物的稳定性差异解释了在延时AFM实验中发现的突触蛋白-DNA复合物的搜索过程中螺纹和部位结合的转移途径的利用。
假单胞菌 KT2440 是一种研究较为深入的细菌,可将木质素衍生的芳香族化合物转化为生物产品。假单胞菌中先进遗传工具的开发缩短了假设检验的周转时间,并使得能够构建能够生产各种目标产品的菌株成为可能。在这里,我们评估了可诱导 CRISPR 干扰 (CRISPRi) 工具集对荧光、必需和代谢靶标的作用。结果表明,用阿拉伯糖 (8K) 诱导启动子表达的核酸酶缺陷型 Cas9 (dCas9) 在各种培养基条件下以及靶向必需基因时均受到严格调控。除了批量生长数据外,还进行了单细胞延时显微镜检查,结果显示同克隆群体中敲低率的内在异质性。在指数增长的细胞中,研究了跨基因组靶标的敲低动力学,发现诱导后普遍存在 1.75 ± 0.38 小时的静止期,其中发生 1.5 ± 0.35 次倍增后才会观察到表型反应。为了展示这套 CRISPRi 工具集的应用,β-酮己二酸(一种性能优越的尼龙单体)以 4.39 ± 0.5 g/L 的浓度和 0.76 ± 0.10 mol/mol 的产量从对香豆酸(一种可从禾本科植物中提取的羟基肉桂酸)中生产出来。这些培养指标是通过使用更高强度的 IPTG (1K) 诱导启动子在指数期早期敲低 β KA 途径中的 pcaIJ 操纵子来实现的。这使得大部分碳被分流到所需产品中,同时无需补充碳和能量来源来支持生长和维持。
微流控装置与荧光显微镜相结合,提供了高分辨率和高内涵的平台,用于研究芽殖酵母酿酒酵母的单细胞形态、行为和复制衰老的动态过程。然而,大量记录的图像使得数据处理工作非常耗费人力和时间,而酵母复制寿命 (RLS) 是酵母衰老的主要标准。为了解决这一限制并进行无标记的 RLS 分析,引入了可通过微流控装置中的微电极轻松功能化的电阻抗谱 (EIS) 来监测芽殖酵母的细胞生长和分裂。在此,提出了一种集成 EIS 生物传感器的微流控装置,以单细胞分辨率进行酵母增殖的原位阻抗测量,从而识别子代从母代分离的瞬时事件。单个酵母细胞被可靠地固定在瓶颈状陷阱中以进行连续培养,在此过程中子细胞在水力剪切力的作用下有效地从母细胞中分离出来。每 2 分钟进行一次延时阻抗测量以监测细胞过程,包括出芽、分裂和解剖。通过使用 K 均值聚类算法首次分析自定义参数“解剖指标”,从 EIS 信号中准确提取了子细胞脱离母细胞的瞬时事件。从而验证了基于阻抗传感技术识别子细胞解剖事件。随着进一步的发展,这种集成电阻抗生物传感器的微流控装置在高通量、实时、无标记分析出芽酵母的衰老和 RLS 方面具有良好的应用前景。
近来,生物组织电子显微镜的成像吞吐量空前提高,使对整个大脑等大型组织块的超微结构分析成为可能。然而,对大型生物样本进行均匀、高质量的电子显微镜染色仍然是一项重大挑战。到目前为止,评估电子显微镜的染色质量需要对样本进行端到端的整个染色方案,对于大型样本来说,这可能需要数周甚至数月的时间,这使得此类样本的方案优化效率低下。在这里,我们提出了一种原位延时 X 射线辅助染色程序,它打开了电子显微镜染色的“黑匣子”,可以实时观察单个染色步骤。使用这种新方法,我们测量了浸入不同染色溶液中的大型组织样本中重金属的积累。我们表明,固定组织中测得的锇积累量在经验上服从孵育时间和样本大小之间的二次依赖关系。我们发现,亚铁氰化钾(四氧化锇的经典还原剂)在锇染色后可使组织变得透明,并且组织在四氧化锇溶液中会膨胀,但在还原锇溶液中会收缩。X 射线辅助染色让我们能够了解原位染色动力学,并使我们能够开发出一种扩散-反应-平流模型,该模型可以准确模拟组织中锇的测量积累。这些是朝着计算机染色实验和模拟引导优化大样本染色方案迈出的第一步。因此,X 射线辅助染色将成为开发可靠染色程序的有用工具,用于大样本(例如小鼠、猴子或人类的整个大脑)。
封面图片。上图:Thy1-GFP 标记的透明化鼠脑(CLARITY)。采用 ZEISS Lightsheet Z.1 采集,在 arivis Vision4D 中处理。使用 5 倍物镜成像,使用来自两侧的 6x7 瓷砖。插图:皮质区域的数字变焦,显示可以识别和分析单个神经元。图片由 Douglas S Richardson 拍摄;经 ZEISS 许可复制。中间左侧:有丝分裂中的 HeLa 细胞的 3D 渲染。来自 300 个时间点图像系列的快照。染色体标记为绿色(mCherry-H2B),线粒体标记为黄色(mitotracker - 深红色),内质网标记为洋红色(mEmerald-calnexin)。细胞器结构清晰可见。由 Wesley Legant 和 Eric Betzig 使用晶格光片显微镜采集。图片来自 Chen 等人Science 2014;346:1257998。经美国科学促进会许可转载。中间右侧:海洋甲壳类动物 Parhyale hawaiensis 六天大胚胎的 3D 渲染体积数据集。七天延时拍摄的一个时间点。使用 ZEISS Lightsheet Z.1 采集,数据在斐济处理和融合。图像由 Tassos Pavlopoulos 拍摄。底部:斑马鱼视网膜的发育过程,在出生后 1.5 天至 3.5 天内,每 12 小时在光片显微镜下拍摄一次。标签:视网膜神经节细胞与 Ath5:RFP(洋红色),无长突细胞和水平细胞与 Ptf1a:YFP(黄色),光感受器和双极细胞与 Crx:CFP(青色)。图片由德累斯顿马克斯普朗克分子细胞生物学和遗传学研究所(MPI-CBG)的 Norden 实验室提供(根据知识共享署名 - 相同方式共享 4.0 国际许可证授权 https://creativecommons.org/licenses/by-sa/4.0/deed.en)。
摘要:小胶质细胞是中枢神经系统(CNS)和视网膜中居民免疫细胞的重要种群。这些微观细胞具有亚细胞过程,由于分辨率和对比度有限,它们使它们在图像方面具有挑战性。生命视网膜中小胶质过程的基线行为的特征很差,但对于了解这些细胞在健康,发育,压力和疾病条件下的反应至关重要。在这里,我们使用体内自适应光学扫描光眼镜扫描,结合了延时成像和过程运动的定量,以揭示健康小鼠群体中小胶质细胞的详细行为。我们发现小胶质细胞过程在所有分支水平上都是动态的,从主质量到终端细胞园。平均速度为0.6±0.4 µm/min,生长和缺失爆发为0–7.6 µm/min,重塑细胞处理。在同一只小鼠中的纵向成像显示细胞 - 索马斯在几秒钟到几分钟内保持稳定,但在几天到几个月内显示出迁移。除了使用小胶质细胞小鼠的体内过程运动和SHOLL分析表征外,我们还证明了无荧光标签的小胶质细胞可以成像。使用安全水平的近红外光的相对对比成像成功成像的小胶质细胞体并用微观级别的细节进行过程重塑,并通过同时对转基因小鼠的荧光小胶质细胞进行成像证实。此外,现在可以进行CNS小胶质细胞研究,而无需颅窗手术,而颅窗手术可能会因局部或全身性炎症而改变其行为。这种无标签方法提供了一个新的机会,可以无创地研究CNS免疫系统,而无需转基因或抗体标记,这可能会带来改变正常小胶质行为的靶向效果。