为了有效地覆盖服务区,通常需要使用多个发射器。当单个发射器的覆盖范围较小时,应使用单个射频信道,以避免需要多信道接收器。在这种情况下,单独的发射器可以顺序或同时运行。在后一种情况下,通常使用偏移载波频率的技术,偏移量适合所采用的编码系统。还需要补偿因各个固定电话线到发射器的特性而导致的调制信号延迟差异。一种方法是通过无线寻呼信道进行代码位同步。需要有关此同步方法允许的比特率的信息。
摘要 大脑皮层如何处理信息?为了回答这个问题,人们付出了很多努力来创造新的和进一步开发现有的神经成像技术。因此,fMRI 设备的高空间分辨率是准确定位认知过程的关键。此外,电生理装置的时间分辨率和记录通道数量的增加为研究神经活动的确切时间打开了大门。然而,在大多数情况下,记录的信号是多次(刺激)重复的平均,这会抹去神经信号的精细结构。在这里,我们展示了一种无监督机器学习方法可用于从单次试验的电生理记录中提取有意义的信息。我们使用自动编码器网络来减少单个局部场电位 (LFP) 事件的维度,以创建可解释的不同神经活动模式集群。令人惊讶的是,某些 LFP 形状对应于不同记录通道中的延迟差异。因此,LFP 形状可用于确定大脑皮层中信息流的方向。此外,在聚类之后,我们解码了聚类中心,以逆向工程底层的原型 LFP 事件形状。为了评估我们的方法,我们将其应用于啮齿动物的神经细胞外记录和人类的颅内 EEG 记录。最后,我们发现自发活动期间的单通道 LFP 事件形状来自可能的刺激诱发事件形状的范围。迄今为止,这一发现仅在多通道群体编码中得到证实。
在正常分散纤维激光器中没有外部压缩的无chiRP无孔孤子的抽象直接生成是超快光学的长期挑战。我们展示了在正常分散杂种杂种纤维纤维激光器中,近乎光谱的边带,含有几米的极化维护纤维。典型模式锁定脉冲的带宽和持续时间分别为0.74 nm和1.95 ps,给出0.41的时间带宽产品,并确认了近乎纤维化的属性。数值结果和理论分析完全再现并解释了实验观察结果,并表明福音双发性,正常分散和非线性效应遵循相匹配的原则,从而实现了近乎无chirp的无孤子的形成。特别是,相匹配效应汇总了通过自相度调制扩大的光谱,而饱和吸收效果则缩小了正常分散体拉伸的脉冲。这种脉冲被称为双重管理的孤子,因为它的两个正交偏振组分以不对称的“ x”方式在极化维护的纤维内传播,部分补偿了由色散引起的群体延迟差异,并在自动一致的进化中导致。在模式锁定的纤维激光器中,双折射管理的孤子管理的特性和形成机制与其他类型的脉冲有所不同,该激光器将在激光物理学,孤子数学及其相关应用中开设新的研究分支。
图 1 替代增长方案的位置 ................................................................................................ 1 图 2 Hall Farm / Loddon Valley – 基础设施假设 .............................................................................. 8 图 3 Ashridge – 基础设施假设 .............................................................................................. 9 图 4 Twyford – 基础设施假设 ............................................................................................. 10 图 5 South Wokingham Extension – 基础设施假设 ............................................................. 11 图 6 旅程时间验证路线 ............................................................................................. 16 图 7 Hall Farm / Loddon Valley – 公路基础设施 ............................................................................. 38 图 8 沿 Shinfield Eastern Relief Road 增加一条南行车道 ............................................................. 41 图 9 Mill Lane 的新通道和与 Winnersh Relief Road 的连接 ............................................................. 42 图 10 在 B3270/Meldreth Way 环形交叉路口通往 Lower Earley Way 的新通道(来源:Abley Letchford Partnership Consulting Engineers,图纸编号A392-097) ................................. 43 图 11 升级至 Lower Earley Way/Hatch Farm Way 交界处。........................................ 44 图 12 Whitley Wood Lane 和 J11 之间西行 2 条车道。 ........................................................... 45 图 13 Ashridge 发展区位置 – 基础设施假设 .............................................................................. 47 图 14 拟议的 Forest Rd / Warren House Rd 信号交叉口 ........................................................ 49 图 15 拟议的 Forest Rd / A321 Twyford Rd 四臂环形交叉口 ............................................................. 50 图 16 拟议的 A329(M) 立体交叉交叉口 – 面向东和西的岔道 ............................................. 51 图 17 拟议的 Church Lane / Orchard Rd 交叉口改进 ............................................................................. 52 图 18 A329(M) Coppid Beech 改进 ............................................................................................. 53 图 19 拟议的 A329(M) 交通管理 ............................................................................................. 54 图 20 Twyford 的 Castle End 花园 - 基础设施假设 ............................................................................. 56 图 21 Twyford 连接路 ............................................................................................................. 58 22 与 New Bath Road 相连的新环形交叉路口...................................................................................... 59 图 23 与 London Road 相连的新环形交叉路口...................................................................................... 59 图 24 与 B3024 Waltham Road 相连的新环形交叉路口......................................................................... 60 图 25 与 B3018 Waltham Road 相连的新环形交叉路口........................................................................................................ 60 图 26 南沃金厄姆延伸区 – 基础设施 .............................................................................. 62 图 27 实际流量,车辆 – 2040 年参考案例。上午高峰 .............................................................. 65 图 28 实际流量,车辆 – 2040 年参考案例。下午高峰 .............................................................. 66 图 29 实际流量,车辆 – 2040 年情景 1B“霍尔农场/花园村”。上午高峰 ......... 67 图 30 实际流量,车辆 – 2040 年情景 1B“霍尔农场/花园村”。下午高峰 ......... 68 图 31 实际流量差异。2040 年情景 1B“霍尔农场”减去参考案例。上午高峰 ........ 69 图 32 实际流量差异。2040 年情景 1B“霍尔农场”减去参考案例。 PM 峰值 ........................ 70 图 33 延迟,秒 – 2040 年参考案例。AM 峰值 .............................................................. 71 图 34 延迟,秒 – 2040 年参考案例。PM 峰值 .............................................................. 72 图 35 延迟,秒 – 2040 年场景 1B“Hall Farm”。AM 峰值 ...................................................... 73 图 36 延迟,秒 – 2040 年场景 1B“Hall Farm”。PM 峰值 ...................................................... 74 图 37 延迟差异。2040 年场景 1B“Hall Farm”减去参考案例。AM 峰值 ...... 75 图 38 延迟差异。2040 年场景 1B“Hall Farm”减去参考案例。下午高峰...... 76 图 39 旅程时间路线............................................................................................................. 78 图 40 表现最差转弯的 V/C 比率 – 2040 年参考案例。上午高峰.................................... 79 图 41 表现最差转弯的 V/C 比率 – 2040 年参考案例。下午高峰.................................... 80 图 42 表现最差转弯的 V/C 比率 – 2040 年情景 1B“Hall Farm”。上午高峰...... 81 图 43 表现最差转弯的 V/C 比率 – 2040 年情景 1B“Hall Farm”。下午高峰...... 82 图 44 实际流量,车辆 – 2040 年参考案例。上午高峰......................................................... 84 图 45 实际流量,车辆 – 2040 年参考案例下午高峰 ......................................................... 85 图 46 实际流量,车辆 – 2040 年情景 1B“阿什里奇 /花园村”。上午高峰 .......... 86 图 47 实际流量,车辆 – 2040 年情景 1B“阿什里奇 /花园村”。下午高峰 .......... 87 图 48 实际流量差异。2040 年情景 1B“阿什里奇”减去参考案例。上午高峰 ......... 88 图 49 实际流量差异。2040 年情景 1B“阿什里奇”减去参考案例。下午高峰 ......... 89 图 50 延误,秒 – 2040 年参考案例。上午高峰 .......................................................... 90 图 51 延误,秒 – 2040 年参考案例。下午高峰................................................................ 91 图 52 延误,秒数 – 2040 年情景 1B‘阿什里奇’。AM 峰值 ................................................. 92 图 53 延迟,秒 – 2040 年情景 1B“阿什里奇”。PM 峰值 .............................................. 93 图 54 延迟差异。2040 年情景 1B“阿什里奇”减去参考案例。AM 峰值 ....... 94