尽管在日常任务中对弱势群体(例如,老年人,儿童和残疾人)的辅助技术有很大的需求,但对高级AID辅助解决方案的研究确实满足了他们的各种需求,这仍然很少。传统的人机互动任务通常需要机器来简单地帮助您对人类能力和感觉的细微差别,例如他们进行实践和学习的机会,自我改善感和自尊心。解决这一差距时,我们定义了一个关键而新颖的挑战智能帮助,旨在为各种残疾人的人提供积极主动而自适应的支持,并在各种任务和环境中提供动态目标。为了确定这一挑战,我们利用AI2- [32]来构建一个新的互动3D实体家庭环境,以完成智能帮助任务。我们采用了一个创新的对手建模模块,该模块对主要代理的能力和目标有细微的理解,以优化辅助代理人的帮助政策。严格的实验验证了我们的模型组件的功效,并显示了我们整体方法与已建立基线的优越性。我们的发现说明了AI所辅助机器人在改善弱势群体的福祉方面的潜力。
职业应用疲劳以及许多其他人类绩效因素,影响工人的健康状况,从而产生了生产质量和效率。采用行业5.0观点,我们建议将人类绩效模型整合到更广泛的工业系统模型中可以提高建模准确性并带来卓越的成果。将我们的工人疲劳模型整合为其工业系统建筑师模型的一部分,使领先的飞机制造商Airbus可以更准确地预测系统的性能,这是劳动力妆容的函数,这可能是人类工人和机器人的组合,或者是经验丰富且经验丰富且经验丰富且经验丰富的工人的组合。我们的方法证明了将人类绩效模型包括在商店地板上引入机器人的重要性和价值,可用于在工业系统模型中包括人类绩效的各个方面,以满足特定的任务要求或不同级别的自动化。
摘要:从表面上看,行为科学和物理学似乎是两个不同的研究领域。然而,对他们解决的问题进行了更仔细的研究表明,它们彼此唯一相关。以量子思维,认知和决策理论为例,这种独特的关系是本章的主题。调查当前的学术期刊论文和学术专着,我们提出了量子力学在人类感知,行为和决策现代研究中的作用的另一种愿景。为此,我们主要旨在回答“如何”问题,故意避免复杂的数学概念,但要开发一种技术简单的计算代码,读者可以修改以设计自己的量子启发的模型。我们还介绍了计算代码的应用并概述几个合理的方案的几个实践示例,其中量子模型基于提议的DO-Yourandself Model套件可以帮助了解个人和社会群体的行为之间的差异。
van der waals异质结构中的Moiré超级晶格代表了高度可调的量子系统,在多体模型和设备应用中都引起了极大的兴趣。然而,在室温下,Moiré电位对光物质相互作用的影响在很大程度上仍然没有。在我们的研究中,我们证明了MOS 2 /WSE 2中的Moiré潜力促进了室温下层间激子(IX)的定位。通过执行反射对比光谱,我们证明了原子力显微镜实验支持的原子重建在修饰内部激子中的重要性。降低扭转角时,我们观察到IX寿命会更长,并且发光增强,表明诸如缺陷之类的非辐射衰减通道被Moiré电位抑制。此外,通过将Moiré超晶格与硅单模腔的整合,我们发现,使用Moiré捕获的IXS的设备显示出明显较低的阈值,与利用DelaCalized IXS的设备相比,较小的一个数量级。这些发现不仅鼓励在升高温度下在Moiré超晶格中探索多体物理学,而且还为利用光子和光电应用中的这些人工量子材料铺平了道路。
1.2 Defiligessitions: ............................................................................................................................................1.2 Defiligessitions: ............................................................................................................................................
Krauss,T。D.*; Bren,K。L.*; Matson,E。M*。 “通过多氧化烷层簇从CDSE量子点中增强光催化氢的活性”。 Commun。,2020,56,8762-8765。Krauss,T。D.*; Bren,K。L.*; Matson,E。M*。“通过多氧化烷层簇从CDSE量子点中增强光催化氢的活性”。Commun。,2020,56,8762-8765。
低温电子显微镜(cryo-EM)已成为确定大型蛋白质复合物和分子组装体结构的主要实验技术,2017 年的诺贝尔奖就是明证。尽管低温电子显微镜已得到极大改进,可以生成包含大分子详细结构信息的高分辨率三维(3D)图谱,但利用这些数据自动构建结构模型的计算方法却远远落后。传统的低温电子显微镜模型构建方法是基于模板的同源性建模。当数据库中找不到模板模型时,手动从头建模非常耗时。近年来,使用机器学习(ML)和深度学习(DL)的从头低温电子显微镜建模已成为大分子结构建模中表现最好的方法之一。基于深度学习的从头低温电子显微镜建模是人工智能的重要应用,其成果令人印象深刻,对下一代分子生物医学具有巨大潜力。因此,我们系统地回顾了具有代表性的基于 ML/DL 的从头低温电子显微镜建模方法。并从实践和方法论的角度讨论了它们的意义。我们还简要介绍了低温电子显微镜数据处理工作流程的背景。总体而言,本综述为从头分子结构建模的人工智能 (AI) 现代研究以及这一新兴领域的未来方向提供了入门指南。
电力电子器件和模块的寿命建模有着悠久的研究历史。两大主要研究方向是数据驱动方法和基于模型的方法。数据驱动方法使用机器学习从经验数据中训练寿命模型。它是一种纯数据挖掘技术,不考虑故障机制。相比之下,基于模型的方法旨在研究故障机制,以便在考虑故障机制的情况下建立寿命模型。虽然数据驱动方法如今由于新一波人工智能的兴起而变得越来越流行,但基于模型的方法一直是经典方法并不断发展。我们的工作属于基于模型的方法。下面,我们将简要回顾主要的基于模型的方法。
J.-L. Vay、A. Huebl,“等离子体粒子加速器大规模建模中原位/传输方法的应用”,ISAV'20 研讨会主题演讲 (2020);M. Larsen 等人,“ALPINE 原位基础设施:从稻草人的灰烬中崛起”,ISAV'17 会议论文 (2017)
职业应用疲劳以及许多其他人类绩效因素,影响工人的健康状况,从而产生了生产质量和效率。采用行业5.0观点,我们建议将人类绩效模型整合到更广泛的工业系统模型中可以提高建模准确性并带来卓越的成果。将我们的工人疲劳模型整合为其工业系统建筑师模型的一部分,使领先的飞机制造商Airbus可以更准确地预测系统的性能,这是劳动力妆容的函数,这可能是人类工人和机器人的组合,或者是经验丰富且经验丰富且经验丰富且经验丰富的工人的组合。我们的方法证明了将人类绩效模型包括在商店地板上引入机器人的重要性和价值,可用于在工业系统模型中包括人类绩效的各个方面,以满足特定的任务要求或不同级别的自动化。