一个工作组的重点是使用现场可再生能源和存储,这是一种在能源效率之后的关键脱碳策略。更好的气候挑战在现场可再生能源和存储工作组的成员首先确定实施这些技术的障碍。然后将解决方案集思广益,以支持投资组合建筑所有者从单个系统转变为广泛实现。示例见解包括提高对安装过程和位置决策的理解,使业务案例向相关的利益相关者提供,讨论整个过程中意外的挑战,并在投资组合中复制这些技术。本文详细介绍了有价值的市场反馈,并突出了迈向广泛部署可再生能源和存储解决方案的途径。
摘要:医院建筑提供医疗服务,费用大量能源消耗和碳排放,进一步加剧了环境负荷。由于对中国医院的生命周期碳排放的研究有限,因此进行了详细的碳计数和比较研究。首先,使用BIM和LCA来量化生命周期每个阶段的住院建筑物的碳排放。其次,根据20份公共建筑物比较了按阶段进行碳排放的差异。结果表明,住院建筑的全寿命碳排放量为10,459.94 kgco 2 /m 2。运营碳排放的比例为94.68%,HVAC(52.57%),设备(27.85%)和照明(10.11%)是主要来源。体现的碳排放量为4.54%,HRB400钢和C30混凝土是碳排放的主要来源。医院在运营碳强度方面仅次于商场,是学校和办公楼的1.71和1.41倍,住院建筑分别是医疗综合体和门诊建筑的3和1.7倍。医院建筑的未来可持续发展应在能源效率和降低碳质量方面促进有效的建筑绩效和良好的环境质量。
Andreas Bluhm IDᄊ,Matthias Christiandlᄊ,Fulvio Gesmundoᄊ,Frederik Ravn Clausenᄊ,Laura Man手法
州和地方政府的介绍:在州和地方政府利益的背景下描述电网互动式高效建筑;强调需求灵活性的趋势、挑战和机遇;概述需求灵活性的估值和绩效评估;并概述州和地方政府可以与公用事业公司、区域电网运营商和建筑业主协同采取的行动,以提高需求灵活性。
加速的城市化过程引起了诸如栖息地丧失,隔离和栖息地质量下降等问题,从而导致城市物种的丰富性和丰富度急剧下降。建造合适的栖息地环境条件是保护动物的最直接和有效的方法。在城市环境中,可以通过整合物种保护和景观规划来实现栖息地的建设,这也是生态系统层面生物多样性保护的重要体现。了解如何将动物栖息地纳入城市计划和设计至关重要,城市规划师将从整体描述动物栖息地结构的步骤和方法的评论中受益。我们进行了审查,以突出动物栖息地太空资源和网络结构。我们综合了过去20年的研究研究发现,以阐明动物栖息地的调查,评估,计划和管理。作为人栖息地退化和人为环境中的分裂,我们的发现表明,城市规划者应考虑生态背景调查,栖息地适用性评估,栖息地计划策略和动物栖息地管理是缓解这些影响的四个关键步骤。本研究将提供有用的参考,以改善动物的生存质量和交流。通过这项研究,合并的研究可以帮助可持续发展和创新,以促进城市绿色空间的生态功能以及人类和动物的和谐共存。
美国在 19 世纪和 20 世纪初采用的最早的建筑规范条例侧重于灾难性火灾和地震后的防火安全以及改善不达标的住房条件。随着时间的推移,规范不断扩展,设立了对自然光、净水、废物处理、结构完整性、抗风和抗食物、最小房间尺寸、建筑出口的最低要求,以及数百项影响生命和财产安全的其他要求。第二次世界大战后,规范还成为实施与住房、普遍可达性和节能相关的新的公共和政府优先事项的可用机制。在接下来的 75 年里,规范及其管理变得越来越复杂,随着新的规范变化不断提高建筑物所需性能的水平,这种模式仍在继续。例子包括侧重于能源消耗和节约、碳减排、通风系统的设计和性能以及城市与荒野交界处防止野火的规定。
纽约州已从 OTDA 获得约 15,000,000 美元的资金,用于实施基于激励的 LIHEAP 计划。该计划将由纽约州住房和信托基金公司 (HTFC) 管理。HTFC 将依靠现有的 WAP 分资助者网络来管理可用资金。这些资金将提供给信誉良好的 WAP 分资助者,以利用他们的 BIL 和/或 WAP 资金,用于针对对能源援助有重大需求的多户家庭投资组合(例如:政府资助的住房、公共住房、特殊需要人士的住房)。将鼓励分资助者利用其他资金开展这项活动。只有现有的分资助者才有资格申请这笔资金,用于他们当前的地理服务区域。
快速的城市化和城市迁移趋势导致建筑建设的增加,从传统实践转变为现代混凝土结构。但是,这种过渡施加了巨大的环境压力,包括资源和能源需求的增强,导致排放量增加。为了衡量构建的环境影响,对每个阶段的彻底检查至关重要。这项研究使用了生命周期评估(LCA)工具,基于ISO 14040:2006,ISO 14044:2006和EN 15978:2011,评估整个现代单户住宅建筑的完整生命周期的二氧化碳(CO 2 -EQ)排放。调查结果显示,在建筑物的寿命为50年的寿命上,每平方米的6411.33 MJ每平方米6411.33 MJ和718.35公斤的排放量。值得注意的是,建筑材料和建筑阶段的生产占总生命周期排放量的最高百分比(60.29%),占能源使用的49.51%。相比之下,操作阶段的排放量相对较低,这归因于烹饪的用电增加以及用于加热和冷却的能源消耗最少。此外,该研究表明,在该国实现完全的电力可能会使建筑物排放量减少39.30%,因为从印度的基于化石燃料的进口将被更清洁的水力发电所取代。
摘要:碳中和建筑依赖于有效的能源管理系统和从不可预测的可再生能源中获取能源。一种策略是利用电动汽车的容量,而可再生能源无法根据需求提供。车辆到电网 (V2G) 技术只有在有资金和实现其有效性的情况下才能扩展,因此必须首先进行投资,首先是充电站和电动汽车。充电站的安装者将获得经济利益或获得激励,反之亦然。本文介绍了一种有效的 V2G 策略,该策略是为运营中的大学校园开发和实施的。还开发了一种机器学习算法来预测所研究建筑物的能源消耗和能源成本。发现所开发的算法在预测能源消耗方面的准确率在 94% 到 96% 之间,成本预测的平均误差小于 5%。所取得的结果表明,能源消耗节省在 35% 左右,如果始终应用该策略,则有可能达到 65% 左右。这证明了机器学习算法在减少碳排放方面的有效性。
氢是一种光明的能源载体,对于脱碳和应对气候变化至关重要。这种能源发展涉及多个领域,包括电力备用系统,以便在停电期间为优先设施负载供电。由于建筑物现在集成了复杂的自动化、家庭自动化和安全系统,能源备用系统引起了人们的兴趣。基于氢的备用系统可以在多日停电的情况下供电;但是,备用系统的大小应适当,以确保基本负载的生存和低成本。从这个意义上讲,这项工作提出了一种使用停电历史的低压 (LV) 建筑燃料电池 (FC) 备用系统的尺寸。历史数据允许拟合概率函数以确定负载的适当生存。建议的尺寸应用于带有光伏发电系统的大学建筑作为案例研究。结果表明,在通常的 330 分钟停电情况下,安装的 FC 电池备用系统的尺寸比仅使用电池的系统便宜 7.6%。如果发生异常的 48 小时停电情况,则可节省 59.3%。它确保在停电期间有 99% 的概率供应基本负载。它证明了 FC 备用系统在应对长时间停电和集成电池以支持突然的负载变化方面的相关性。这项研究的重点是使用实际停电的历史数据来定义具有总服务概率的基本负载的生存。它还可以确定非优先负载的充分生存。所提出的尺寸适用于其他建筑物,并可以量化备用系统的可靠性,以增强电气系统的弹性。