电阻随机记忆(RRAM)由于其简单的金属 - 绝缘剂 - 金属(MIM)结构而计入最有希望的非挥发记忆技术。RRAM显示出诸如快速(<1 ns)[1]和低功率开关(每位1 pj),[2]高耐力(> 10 9个周期),[3]对电离辐射的弹性,[4]和出色的缩放能力低于10 Nm的能力。[5] Resistive switching has been observed in materials such as hafnium, tantalum, and yttrium oxide, [6–8] which are well- established materials in complementary metal oxide semiconductor (CMOS) tech- nology, making RRAM easily integrable in existing back-end-of-line Si technology, and thus, an interesting candidate for new emerging applications such as cybersecu- rity and neuromorphic计算。尤其是,由于自主驾驶,图像识别和深度学习等新兴领域,神经形态变得越来越重要。
问题 本文重点介绍油气井完井用电缆射孔技术的一个关键组件,即选择性控制枪系统电压的开关连接。当开关向射孔枪组件施加适当的电压时,爆炸会导致塞子或封隔器被设置,或射孔孔被喷射到套管、水泥和地层中。如今,选择性地将塞子和枪定位在井下的能力是垂直和水平应用中完井的关键要求,并已导致开发用于选择射孔的新型可寻址开关。新的开关取代了目前的压力开关,如果施加了杂散(不需要的)电压,压力开关可能会无意中引爆枪。井下发生这种情况的成本可能很高,因为需要大量资源来修复受损的井眼,或者导致生产损失或次优生产。如果意外爆炸发生在地面,结果可能会危及生命。为了防止此类事件发生并提供最高级别的安全性,新的开关是电寻址的,并且必须与地面系统和电缆操作员直接通信,然后它们才能将电流传递到射孔枪并允许爆炸。因此,它们在爆炸作业中使用起来本质上更安全,并且已被证明更可靠。在描述这种新的开关技术时,本文提出了一个行业快速采用它的案例。
调节反义寡核苷酸(ASOS)为罕见的神经系统疾病提供治疗选择,包括患者特异性,个性化的ASOS,其中包括非常罕见的突变。受到米拉森(Milasen)的发展,1突变1药物(1m1m)和荷兰RNA治疗中心(DCRT)的启发,旨在发展特异性患者ASO,并分别治疗欧洲和荷兰的合格患者。将在指定的患者环境下提供治疗。我们的举措受益于欧洲药品局(EMA)在临床前校对研究,安全研究,复合和衡量治疗患者的福利和安全性方面的监管建议。我们在这里概述了这些相互作用中最重要的考虑因素,以及我们如何在欧洲境内制定和治疗合格患者的计划中实施此建议。
比例[1] - [2]。SCC输出阻抗与电容器值C fly和工作频率F SW的乘积成反比[3]。因此,将工作频率提高10倍或多或少地降低了具有相似因素的被动组件的足迹。但是,开关损耗增加了10倍,从而降低了功率效率。低功率 - 例如MW量表及以下 - 如图1如果保持大于90%的效率,则开关损耗限制了可实现的工作频率。由于工作频率有限,因此电容密度较高的电容器是增加功率密度(w/mm 3)[4] - [5]的替代方法。尽管如此,电容密度的增加限制为几个200 nf/mm 2 [6](深部电容器),无法保持低功率下的不可忽略的开关损失。另外的电容器和电感器,第三能量
a 德克萨斯大学达拉斯分校化学与生物化学系,b 可再生能源与车辆技术实验室,c 生物医学工程系,800 West Campbell Road,理查森,德克萨斯州 75080,美国。d 印度理工学院印多尔分校 (IIT Indore) 物理学科和冶金工程与材料科学 (MEMS) 学科,Simrol,Khandwa Road,Indore-453552,中央邦 (MP),印度。e FAMU-FSU 联合工程学院化学与生物医学工程系,佛罗里达州塔拉哈西 32310,美国。f 当前地址:密歇根州立大学化学工程与材料科学系,密歇根州东兰辛 48824,美国。† 这些作者对本文贡献相同。* jmendoza@msu.edu * Gassensmith@utdallas.edu 摘要
PCB 设计 PCB 尺寸:~ 182mm x 424mm (宽 x 长) PCB 厚度:3.52±10% (~137 Mils) PCB 材料:日立 LW910G、HE679G(极低损耗、低 Dk、无卤素) 估计功耗:~450W 环境温度:最高 35°C Mellanox SoC 详细信息 (MT54240A0-FCCR-H) 封装类型 HFCBGA 总引脚数:3124 重量 61 克 尺寸 57.5 mm x 57.5 mm 球数 3124 球距 1 mm 球尺寸 0.6 mm 近似 ASIC 引脚分布详细信息:电源引脚:~ 40 模拟电源引脚:~90 接地引脚:~90 高速网络:~ 656(40 四 (4x) SerDes 56 Gbps PAM4, 4 PCI Express 3.0 通道)电源网络详情 VDD 0.85V VDDCPA 0.85V VDDHS[1:0] 1.2V VDDHSPX 1.2V VDDO[19:0][1: 1.8V VDDOPX 1.8V VDDA[1:0] 1.8V VDDAPX 1.8V VDDPLL[1:0] 1.8V VDDPLLPX 1.8V VDDIO 3.3V 4 第 22 页:第 IV 节,项目:7. 中标者向 C-DAC 交付的物品 要点:(j)所述组装板 - 五 (5) 块完全组装的
在所有神经网络中,PIKING 神经网络 (SNN) 最忠实地模拟了人脑,并且被认为是处理时间数据最节能的网络。人工神经元和突触是 SNN 的组成部分。最初,SNN 的硬件采用复杂的互补金属氧化物半导体 (CMOS) 电路实现,其中单个神经元或突触由多个晶体管实现,这在面积和能耗方面非常密集 [1]。2008 年忆阻器的发现促进了使用单个双端器件实现人工突触的发展 [2],[3]。然而,尽管人工神经元同样重要,但使用单个器件实现人工神经元的研究还不够深入。最近,阈值开关忆阻器 (TSM) 器件 [4]、非挥发性忆阻器 [5]、相变材料 (PCM) [6]、基于铁电材料的场效应晶体管 (FET) [7]、[8] 和浮体晶体管 [9] 已被用于演示用于 SNN 的漏电积分激发 (LIF) 神经元。二维材料的忆阻特性为利用这些原子级薄系统实现人工神经元提供了机会,这将实现神经网络硬件的最终垂直扩展 [10]-[12]。H Kalita 等人演示了一种基于 MoS 2 /石墨烯 TSM 的人工神经元,但阈值电压高、开关比低、导通时间短。
摘要:可见光集成光子学可用于传统(C 波段和 O 波段)硅光子学无法实现的应用,包括囚禁离子和中性原子量子实验、生物光子学和显示器。尽管展示了越来越先进的功能和集成度,但低功耗、单片集成的可见光开关和移相器的开发仍然是一项艰巨的挑战。在这里,我们展示了一种用于可见光谱的集成光子静电 MEMS 驱动的 Mach-Zehnder 干涉仪光开关。该设备在 540 nm 波长下以 7.2 dB 的消光比和 2.5 dB 的光损耗运行。测得的 10-90% 上升(下降)时间为 5(28)µ s,实现了约 0.5 nW 的低静态功耗。30 kHz 开关频率下的动态功耗估计为 < 70 µW。
尽管很长一段时间都知道哪些大脑领域支持语言理解,但我们对这些额叶和时间区域实施的神经计算的了解仍然有限。一个重要的未解决的问题涉及组成语言网络的神经种群之间的功能差异。利用颅内记录的高时空分辨率,我们检查了对句子和语言降解条件的响应,并发现了三个在时间动力学上有所不同的响应曲线。这些轮廓似乎反映了不同的时间接受窗口(TRW),平均TRW约为1、4和6个单词,如用简单的单参数模型所估算的。表现出这些概况的神经种群在整个语言网络中交织在一起,这表明所有语言区域都可以直接访问语言输入的独特多尺度表示,这是一种可能对语言处理的效率和稳健性至关重要的属性。
常规的单连接太阳能电池具有33%的理论效率限制,而多开关太阳能电池(MJSC)当前是唯一克服该限制的技术。热载体太阳能电池(HCSC)的演示是另一种依赖于收获光生成的携带者的动能的高耐高率方法,由于缓解携带者的热力化的困难。在这封信中,我们通过引入热载体太阳能电池(HCMJSC),这两个概念的协同作用,这是一个带有薄热载体顶交界处的MJSC。使用详细的平衡模型,我们将不同设备的效率与三个参数的函数进行比较:顶部和底部连接的带隙,顶部和底部连接的带隙,顶部和底部连接的效率,以及有效的热量系数,这封装了热化和光捕获的信息。除了允许比MJSC的材料组合范围更广泛,我们还表明,HCMJSC可以达到比HCSC较大的热化系数高的MJSC的效率。因此,HCMJSC可以为开发基于热载体的高效设备提供首选的途径。