模拟开关的常见应用是时分复用,其中许多信号在单个通道上处理。高速切换允许通道上具有更高的信息容量,因为模拟开关的切换速度与最大开关激活频率直接相关。开关打开和关闭的速度越快,可能的开关频率就越高。图 7 显示了此关系的一个示例。如果开关以 1MHz 的频率激活,则必须在 500ns 的时间段内打开和关闭。由于 HI-201HS 的最大开启和关闭时间为 50ns,并且可以在 100ns 的时间段内打开和关闭,因此理论上可以以 5MHz 的频率激活它。这种改进的功能使 HI-201HS 成为需要高频数据处理的设计工程师的有吸引力的组件。与工程师的对话表明可能的应用是计算机图形和视觉显示电路设计。
随脉冲数增加而呈现增加趋势,并表现出显著的光感应行为,随着光功率从0 mW增加到8 mW而稳步增强。这种依赖于功率的电导控制表明了对突触权重的光学可调性,预示着未来视觉神经应用的潜力。图4i展示了通过调制光功率对开关时间(施加单脉冲时设备电流稳定的时间)的有效控制。对于读取电压为1 V、幅度为5 V、脉冲宽度和间隔均为3 s的脉冲,在532 nm激发下,开关时间从约1.8 s减少到0.6 s。这暗示了光调制忆阻器在神经形态应用上的高级灵敏度。
Rad Hard eGaN® 晶体管专为高可靠性或商业卫星空间环境中的关键应用而设计。GaN 晶体管在空间环境中具有出色的可靠性性能,因为单事件没有少数载流子,作为宽带半导体,质子和中子的位移更小,而且没有氧化物击穿。这些器件具有极高的电子迁移率和低温度系数,从而导致非常低的 R DS(on) 值。芯片的横向结构提供了非常低的栅极电荷 (QG ) 和极快的开关时间。这些特性使电源开关频率更快,从而实现更高的功率密度、更高的效率和更紧凑的设计。
摘要:旋转轨道扭矩内存是下一代非挥发性随机访问存储器的合适候选者。它将高速操作与出色的耐力结合在一起,在缓存中使用尤其有希望。在这项工作中,将两电流的脉冲磁场旋转轨道扭矩切换方案与增强学习结合在一起,以确定导致该方案的最快磁化切换的电流脉冲参数。基于微磁模拟,这表明开关概率在很大程度上取决于当前脉冲的构造,用于用次纳秒时定时进行细胞操作。我们证明,实现的强化学习设置能够确定最佳的脉冲配置,以达到150 PS的开关时间,比使用非优化脉冲参数获得的时间短50%。强化学习是一种有前途的工具,可以自动化并进一步优化两脉冲方案的开关特性。对材料参数变化的影响的分析表明,如果正确调整了施加的脉冲的当前密度,则可以确保对变异空间内的所有单元的确定性切换。
最低级别,故障与技术有关。金属或多晶硅信号线中的短路或开路等物理缺陷会改变电压、开关时间和其他属性。3 外部干扰也在这个级别起作用,影响信号线、电荷存储和其他属性。在逻辑级别,数字系统由门和存储元件建模,所有信号都表示为二进制值。低级容错策略旨在检测或屏蔽产生错误逻辑值的故障。由于其简单性,“卡住”模型是最广泛使用的逻辑故障模型,假设故障在信号线上表现为固定的逻辑值。更复杂的模型是“桥接”故障,其中信号线之间的耦合导致一条线的逻辑值影响另一条线的值。其他复杂故障会改变门的基本逻辑功能,这在可编程逻辑阵列中经常发生,其中 AND/OR 阵列中连接的存在或不存在会导致在功能中添加或删除蕴涵项。在更高的抽象级别(寄存器、算术逻辑单元、处理器等)故障通常表现为模块行为的变化,由其真值表或状态表表示。在此级别,故障建模通常更抽象,以方便在行为级别进行模拟;因此,通常会牺牲准确性。
在最低层次上,故障与技术有关。金属或多晶硅信号线的短路或开路等物理缺陷会改变电压、开关时间和其他特性。3 外部干扰也在这个层次上起作用,影响信号线、电荷存储和其他特性。在逻辑层次上,数字系统由门和存储元件建模,所有信号都表示为二进制值。低级容错策略旨在检测或屏蔽产生错误逻辑值的故障。由于其简单性,“卡住”模型是最广泛使用的逻辑故障模型,该模型假设故障在信号线上表现为固定的逻辑值。更复杂的模型是“桥接”故障,其中信号线之间的耦合导致一条线的逻辑值影响另一条线的值。其他复杂故障会改变门的基本逻辑功能,这在可编程逻辑阵列中经常发生,其中 AND/OR 阵列中连接的存在或不存在会导致功能中添加或删除蕴涵项。在更高的抽象级别(寄存器、算术逻辑单元、处理器等)中,故障通常表现为模块行为的变化,由其真值表或状态表表示。在此级别,故障建模通常更抽象,以方便在行为级别进行模拟;因此,通常会牺牲准确性。
在最低层次上,故障与技术有关。金属或多晶硅信号线的短路或开路等物理缺陷会改变电压、开关时间和其他特性。3 外部干扰也在这个层次上起作用,影响信号线、电荷存储和其他特性。在逻辑层次上,数字系统由门和存储元件建模,所有信号都表示为二进制值。低级容错策略旨在检测或屏蔽产生错误逻辑值的故障。由于其简单性,“卡住”模型是最广泛使用的逻辑故障模型,该模型假设故障在信号线上表现为固定的逻辑值。更复杂的模型是“桥接”故障,其中信号线之间的耦合导致一条线的逻辑值影响另一条线的值。其他复杂故障会改变门的基本逻辑功能,这在可编程逻辑阵列中经常发生,其中 AND/OR 阵列中连接的存在或不存在会导致功能中添加或删除蕴涵项。在更高的抽象级别(寄存器、算术逻辑单元、处理器等)中,故障通常表现为模块行为的变化,由其真值表或状态表表示。在此级别,故障建模通常更抽象,以方便在行为级别进行模拟;因此,通常会牺牲准确性。
在最低层次上,故障与技术有关。金属或多晶硅信号线的短路或开路等物理缺陷会改变电压、开关时间和其他特性。3 外部干扰也在这个层次上起作用,影响信号线、电荷存储和其他特性。在逻辑层次上,数字系统由门和存储元件建模,所有信号都表示为二进制值。低级容错策略旨在检测或屏蔽产生错误逻辑值的故障。由于其简单性,“卡住”模型是最广泛使用的逻辑故障模型,该模型假设故障在信号线上表现为固定的逻辑值。更复杂的模型是“桥接”故障,其中信号线之间的耦合导致一条线的逻辑值影响另一条线的值。其他复杂故障会改变门的基本逻辑功能,这在可编程逻辑阵列中经常发生,其中 AND/OR 阵列中连接的存在或不存在会导致功能中添加或删除蕴涵项。在更高的抽象级别(寄存器、算术逻辑单元、处理器等)中,故障通常表现为模块行为的变化,由其真值表或状态表表示。在此级别,故障建模通常更抽象,以方便在行为级别进行模拟;因此,通常会牺牲准确性。
在最低层次上,故障与技术有关。金属或多晶硅信号线的短路或开路等物理缺陷会改变电压、开关时间和其他特性。3 外部干扰也在这个层次上起作用,影响信号线、电荷存储和其他特性。在逻辑层次上,数字系统由门和存储元件建模,所有信号都表示为二进制值。低级容错策略旨在检测或屏蔽产生错误逻辑值的故障。由于其简单性,“卡住”模型是最广泛使用的逻辑故障模型,该模型假设故障在信号线上表现为固定的逻辑值。更复杂的模型是“桥接”故障,其中信号线之间的耦合导致一条线的逻辑值影响另一条线的值。其他复杂故障会改变门的基本逻辑功能,这在可编程逻辑阵列中经常发生,其中 AND/OR 阵列中连接的存在或不存在会导致功能中添加或删除蕴涵项。在更高的抽象级别(寄存器、算术逻辑单元、处理器等)中,故障通常表现为模块行为的变化,由其真值表或状态表表示。在此级别,故障建模通常更抽象,以方便在行为级别进行模拟;因此,通常会牺牲准确性。
1。引言电力电子技术始终发展为更高效率,更高的功率密度和更集成的系统[1],[2]。目前,大多数转换器均设计为嵌入到应用程序外壳中,因此其体积受产品案例大小的限制。使用较小的被动元素和较高的开关频率实现了这种尺寸的降低[3],这构成了由于切换和驱动损失而引起的新挑战系统效率[4]。增加系统的功率密度而不影响整体效率需要提高功率开关的进步。不幸的是,基于硅(SI)的功率设备特性正在达到其理论限制,并且在阻断电压能力,操作温度和开关频率限制其使用方面具有重要的局限性[1],[5]。在过去的几年中,基于宽带盖(WBG)半导体材料[6]的新一代电源设备可作为商业货架(COTS)产品使用。WBG半导体,例如碳化硅(SIC)和硝酸盐(GAN),显示出改进的材料特性,使其成为SI Power Devices替换时的绝佳选择。WBG材料的特征是它们的高电场强度,它允许具有高掺杂速率的非常薄的漂移层[7],[8]。因此,基于这些材料的设备受益于降低州立电阻的能力,从而减少了传导损失[9]。此外,WGB材料中的载体移动性比SI优于SI,可以更快地转到 /关闭开关时间,从而降低开关损失。