稳压和非稳压电源均可用于为驱动器供电。但是,非稳压电源由于其耐受电流浪涌的能力而更受青睐。如果确实使用了稳压电源(例如大多数开关电源。),则重要的是具有较大的电流输出额定值以避免诸如电流钳位之类的问题,例如使用 4A 电源进行 3A 电机驱动器操作。另一方面,如果使用非稳压电源,则可以使用电流额定值低于电机的电源(通常为电机电流的 50% ~ 70%)。原因是驱动器仅在 PWM 周期的开启期间从未稳压电源的电源电容器中汲取电流,而在关闭期间则不会汲取电流。因此,从电源中汲取的平均电流远小于电机电流。例如,两个 3A 电机可以由一个 4A 额定电源充分供电。
稳压和非稳压电源均可用于为驱动器供电。但是,非稳压电源由于其耐受电流浪涌的能力而更受青睐。如果确实使用了稳压电源(例如大多数开关电源。),则重要的是具有较大的电流输出额定值以避免诸如电流钳位之类的问题,例如使用 4A 电源进行 3A 电机驱动器操作。另一方面,如果使用非稳压电源,则可以使用电流额定值低于电机的电源(通常为电机电流的 50% ~ 70%)。原因是驱动器仅在 PWM 周期的开启持续时间内从未稳压电源的电源电容器中汲取电流,而在关闭持续时间内则不会汲取电流。因此,从电源中汲取的平均电流远小于电机电流。例如,两个 3A 电机可以由一个 4A 额定电源充分供电。
PN8145集成脉宽调制控制器和新一代高可靠功率MOSFET,专用于高性能、简化外围元件的AC-DC开关电源。芯片提供极为全面、智能化的保护功能,性能卓越,包括周期性过流保护、过载保护、软启动功能等。通过HI-mode、Eco-mode、Burst-mode三种脉冲功率调节模式混合技术及特殊器件低功耗结构技术,实现超低待机功耗,全电压范围下最佳效率。频率调制技术和SoftDriver技术充分保证良好的EMI性能。芯片还内置智能高压启动模块。PN8145为需要超低待机功耗的高性价比反激式开关电源系统提供了先进的实现平台,非常适合VI级能效、Eur2.0、Energy Star应用。
计算机中经常使用的电源单元是 SMPS(开关电源)。SMPS 提供 +12、-12、+5、-5 和 3.* DC 电压供操作使用。使用 SMPS 时,可在很宽的输入交流电压范围内产生不间断输出。SMPS 使电源单元紧凑、坚固且可靠。SMPS 将切换,直到在打开 CPU 时从计算机主板获得负回路。首先,SMPS 将输入交流电压转换为相应的直流电压,然后以非常高的频率施加到开关电路。该高频(AC)被馈送到具有不同胶带的降压变压器,以获得运行计算机所需的各种电压。然后对这些交流电压进行整流和滤波。最后,我们得到不同级别的纯直流电压。电源是主板的主电源,然后是风扇的电流主板,smps 线的名称硬线的进程和 SMPS 以及进程风扇的电源管理和其他电源设备
四十多年来,随着功率金属氧化物硅场效应晶体管 (MOSFET) 结构、技术和电路拓扑的创新与日常生活中对电力日益增长的需求保持同步,电源管理效率和成本稳步提高。然而,在新千年,随着硅功率 MOSFET 渐近其理论界限,改进速度已经放缓。功率 MOSFET 于 1976 年首次出现,作为双极晶体管的替代品。这些多数载流子器件比少数载流子器件速度更快、更坚固,电流增益更高(有关基本半导体物理的讨论,一个很好的参考资料是 [1])。因此,开关电源转换成为商业现实。功率 MOSFET 最早的大批量消费者是早期台式计算机的 AC-DC 开关电源,其次是变速电机驱动器、荧光灯、DC-DC 转换器以及我们日常生活中成千上万的其他应用。最早的功率 MOSFET 之一是国际整流器公司于 1978 年 11 月推出的 IRF100。它拥有 100V 漏源击穿电压和 0.1 Ω 导通电阻 (R DS(on)),堪称当时的标杆。由于芯片尺寸超过 40mm2,标价为 34 美元,这款产品注定不会立即取代备受推崇的双极晶体管。从那时起,几家制造商开发了许多代功率 MOSFET。40 多年来,每年都会设定基准,随后不断超越。截至撰写本文时,100V 基准可以说是由英飞凌的 BSZ096N10LS5 保持的。与 IRF100 MOSFET 的电阻率品质因数 (4 Ω mm 2 ) 相比,BSZ096N10LS5 的品质因数为 0.060 Ω mm 2 。这几乎达到了硅器件的理论极限 [2]。功率 MOSFET 仍有待改进。例如,超结器件和 IGBT 已实现超越简单垂直多数载流子 MOSFET 理论极限的电导率改进。这些创新可能还会持续相当长一段时间,并且肯定能够利用功率 MOSFET 的低成本结构和一批受过良好教育的设计人员的专业知识,这些设计人员经过多年学习,已经学会了从功率转换电路和系统中榨干每一点性能。
对于 LED 系统,驱动器级是整体性能的关键。驱动器效率在 80-95% 之间变化,这意味着在电源/驱动器部分可能会损失高达 20% 的能量。LED 驱动模块的核心技术是 SMPS(开关电源)。多年来,SMPS 已经过开发和优化,专业 LED 驱动器 IC 为模块提供“智能”。驱动 LED 的新方面是需要电压到电流转换器技术。市场上的 LED 驱动模块范围从只需要一个外部电感器的简单系统(电路)到带有外部控制接口的复杂驱动器。驱动技术的选择主要基于所需的功能,例如调光、颜色控制、闭环反馈系统,但简单性和知识产权 (IP) 权利在选择最合适的技术时也起着重要作用。最后,始终存在系统成本这个大问题;由于 LED 的成本约为 100 lm/美元,因此必须考虑驱动级、光学和热管理,才能开发出推动市场增长机会的新照明解决方案。
1 硕士技术学者,2 助理教授 1&2 电子与通信工程系,1&2 Shri Ram 工程与管理学院,Banmore Gwalior,印度 摘要:最近,AC-DC 电力电子技术变得越来越高效和具有成本效益,但总有改进的空间。本研究论文涉及 APFC 恒流降压型开关电源中集成自偏置电源的设计和分析。它提出了一种有源功率因数校正 (APFC) 低侧恒流降压型 SMPS IC 中的集成自偏置 VCC 电源,该电源没有外部磁芯和铜线绕组。使用低侧恒流降压转换器的 7W LED 驱动器对设计的电路进行了评估和验证。实验结果表明,基于所提方案的 IC 具有出色的效率、EMI 性能并且功耗更低。所提出的电源电路的应用也可以扩展到其他转换器,例如降压、降压-升压、反激和 Zeta。索引术语 - APFC 低侧 CC 降压转换器、自偏置 VCC、电荷泵单元。
摘要:电源开关系统的重要特征之一是使用快速开关电源半导体设备。MOSFET用于快速开关应用程序,包括无线电源传输开关系统。基于热时间常数的热模型对于准确预测MOSFET设备功率耗散和特性是必要的。文献中讨论的许多热模型都是基于线性近似的,而不是旨在结合动态MOSFET特性和散热器模型。在本文中,我们介绍了现有热模型的文献调查。为MOSFET R DS(ON)开发了一个模型,以及平均功率计算,散热器温度和连接至案例温度。使用LT Spice Simulation工具将R DS(ON)的瞬态热模型(ON)合并到完整的桥梁谐振模型中。计算半导体装置内的MOSFET功率耗散和连接温度。提出的模型具有动态功能,根据模拟时间调节设备电阻。因此,该模型非常适合根据流经设备的谐振电流预测MOSFET连接温度。通过模拟结果,我们提供了连接温度升高和平均功率耗散的估计,从而验证了拟议方法的有效性。索引项 - MOSFET,可靠性,LT香料,功率,温度,高压。
标准功能 感谢您的购买。 DIN 继电器是一种工业以太网控制继电器,具有以下功能: Web 界面、键盘和 LCD 可以从任何标准 Web 浏览器访问内部 Web 服务器。只需输入 IP 即可通过 Web 配置和控制,或使用键盘和 LCD 进行本地控制。 8 SPDT 继电器输出 提供八组单刀双掷触点。螺丝端子在商业温度范围内的额定电流为 6-10 安培。T-90 继电器的额定电流为 15-30A 277V。 通用电源输入 内部桥式整流器和开关电源可接受 9-24 伏交流电或 10-48 伏直流电。输入极性无关紧要。 新功能:RS-232 端口、UVLO 3.1 版中添加了 RS-232 Web 终端和欠压锁定 安全性:密码、HTTP 端口和子网限制 密码安全和可更改的 HTTP 端口有助于控制访问。子网限制将控制限制在您的 LAN 上。多个用户可通过单独的继电器屏蔽获得支持。顺序“开启定时器”可编程延迟定时器允许继电器按顺序开启,而不是同时开启。许多负载在首次开启时会消耗更多电力。当负载设备连接到单个电路时,排序可防止电路过载。脚本、AutoPing 和 FLASH 固件升级 BASIC 样式脚本语言提供简单的 PLC 功能。AutoPing 自动监控和重启路由器、服务器和 IP 设备。FLASH 固件可升级 vi
介绍了一种用于 Embraer 190/195 运输类飞机的新型 DC-Link VSCF AC-DC-AC 电力系统转换器。建议的转换器可以取代现有的基于 CSCF IDG 的传统系统。几架当代生产的飞机已经将 VSCF 作为主要或备用电源。过去,较旧的 VSCF 系统存在问题;然而,开关电源电子和数字控制器已经成熟,我们认为现在可以安全地集成并取代现有的为 CSCF AC 发电机供电的恒速液压传动装置。使用 IGBT 功率晶体管进行中等水平的功率转换和相对快速有效的切换。利用 VSCF 进行电力发电、转换、分配、保护和负载管理可提供传统 CSCF IDG 系统所不具备的灵活性、冗余性和可靠性。针对 E190/195 提出的 DC-Link VSCF 系统利用 12 脉冲整流器、降压转换器和 3-w 12 步逆变器(带 D-Y、Y-Y 和 Y-D 3-w 变压器)提供多个级别的 3-w 交流和直流电源,即 330/270/28 VDC 和 200/115/26 VAC。使用三个参考交流相位信号和高达 100 kHz 三角载波的传统双极双边载波脉宽调制可用于消除所有偶数和许多奇数超谐波。无源低通滤波器用于消除更高的谐波。RL 交流负载与