在国内和国际文献中,在使用混合储能系统来减轻风能波动的策略方面取得了广泛的进步。Long [13]提出使用小波分解理论将风电场的原始输出功率分解为多个尺度,并采用模糊控制,以优化混合储能系统的初始功率分配。但是,小波分解层的选择会影响分解结果。Xianjun和Jia [14-15]提出了一种改进的小波包抑制策略,该策略不仅符合风电网连接标准,而且还降低了电荷分离开关频率,从而增强了存储系统的经济活力。Zhang [16]提出了平均滑动和EMD,以获得网格连接和储能功率信号,目的是最大化净福利以完成储能系统配置。guo [17]提出了通过考虑最新电荷(SOC)并配置额定功率和容量和容量和容量来分解混合能源系统功率。使用自适应变分模式分解(VMD)算法,Xiao [18]通过结合超级电容器和氢储罐的状态来分配内部功率,从而自适应地分解风力。fang [19]使用VMD和Wigner – Ville分布算法来处理原始功率数据,并应用了混乱粒子群优化算法来解决两阶段的每月和日前优化问题。Xidong [20]提出了一种方法,该方法将最佳的指数平滑与Ceemdan结合在一起,以获得与网格连接和存储的功率,从而促进了存储系统中的内部功率分配。
•高功率密度,高功率,高功率增强充电器,用于支撑USB PD 3.0轮廓的1-4个电池电池 - 整合了四个开关MOSFET,BATFET - 整合输入和充电当前感应•高效 - 750-kHz或1.5-MHz开关频率 - 5-A收费范围为10-MA的电量•96.5%16-16-16-16-AA-16-VIFIESS•96.5%AA-16-V输入源 - 自主采样的开路电压(V OC)最大功率点跟踪(MPPT),用于从光伏面板充电 - 3.6-V至24V宽输入的操作电压范围,具有30-V绝对最大额定值 - 检测USB BC1.2,HVDCP和非hvdcp和非hvdcp and-non-distraper douncote•Dist•Distrup dual dual(Dial Contrup)•DUAL DUAL(DUAL)DUAL(DUAL)•DUAL DUAUL(DUAL)•DIAL DUAUL(DUAL)) (NVDC)功率路径•具有超快速切换到可调节电压的备份模式•为USB端口(USB OTG)驱动USB端口 - 2.8-V至22-V OTG输出电压,并分辨率为10 mV,可支持USB-PD PPS - OTG PPPS - OTG OTG电流范围均可进行40 ma稳定性•可稳定的自动范围•可稳定的自动驾驶•稳定性•稳定性•稳定性•稳定的自动级数2 C模式。 voltage, current, and temperature monitoring • Low battery quiescent current – 17 µA for battery only operation – 500 nA in Charger Shutdown Mode • High accuracy – -0.25% to +0.65% charge voltage regulation for 2S batteries – ±5% charge current regulation – ±5% input current regulation • Safety – Thermal regulation and thermal shutdown – Input/battery OVP and OCP – Converter MOSFETs OCP – Charging safety计时器•包装 - 29针4 mm×4 mm QFN
•与BQ25703A兼容的针脚和软件•充电1至4S电池从广泛的输入源 - 3.5-V至24-V输入操作电压 - 支持USB2.0,USB 3.0,USB 3.0,USB 3.1(C型C)和USB电源(USB供应(USB-PD)输入(USB-PD)输入(USB-PD) - 无需(USB-PD)的运算 - 毫无目前的运算 - (IDPM和VDPM)针对来源超负荷•电源/当前的CPU节流电源监视器 - 全面的ProChot轮廓,IMVP8/IMVP9符合符合的和电池电流监视器 - 系统电源监视器 - IMVP8/IMVP9兼容•符合范围的电压DC(NVDC)电源型电池管理 - 无电量型电池组件 - 电池组件 - 电池启动 - 电池 - 电池 - 电池 - 电池 - 电池 - 电池 - 电池 - 电池 - 电池 - 电池 - 电池 - 电池电量 - 电池 - 电池 - 电池电量 - diode operation in supplement mode • Power up USB port from battery (USB OTG) – 3-V to 20.8-V VOTG With 8-mV resolution – Output current limit up to 6.4 A with 50-mA resolution • TI patented Pass Through Mode (PTM) for system power efficiency improvement and battery fast charging • When system is powered by battery only, Vmin Active Protection (VAP) mode supplements battery from input capacitors during system peak power spike •输入当前优化器(ICO)以提取最大输入功率•800-kHz或1.2-MHz可编程的可编程开关频率,以2.2-µh或1.0-µh电感器或1.0-µh电感器•用于灵活的系统配置的主机控制接口 - I 2 C端口最佳系统性能和状态的最佳系统性能和状态报告 - 无需进行EC的限制•电动量•电动量•电动量•电动量•电动量•电动量•电动量•电动量•电动量•
摘要 本文研究了商用平面和沟槽 1.2 kV 4H-SiC MOFSET 在重复非钳位电感开关 (UIS) 和短路 (SC) 应力下的可靠性。观察到器件特性的退化,包括传输特性、漏极漏电流 Idss 和输出特性。对 400 和 600 V 总线电压进行重复 SC 应力。应力期间总线电压的增加对测试器件的电气性能有更大的影响。在老化实验期间可能会发生热载流子注入和进入沟道区域栅极氧化物的捕获,这被认为是导致电气参数变化的原因。 关键词:可靠性、退化、SiC MOSFET、TrenchMOSFET、重复 UIS、重复短路 介绍 近年来,碳化硅 (SiC) 功率 MOSFET 制造技术已经相当成熟,因此,现在可以从不同的制造商处大量购买 [1]。由于其优异的性能,SiC 器件可用于更高温度、更高开关频率和更高功率密度的应用 [2-3]。尽管如此,在它们完全取代硅 (Si) 器件之前,稳健性和可靠性仍然是这些器件在过流、过温、短路和非箝位电感开关 (UIS) [5] 等多种极端工作条件下的主要问题 [3-4]。随着为降低成本而缩小芯片尺寸的趋势,雪崩稳健性和短路承受能力变得更加关键,因为它们对芯片尺寸设计非常敏感,因为芯片的最大能量密度是固定的。在 UIS 测试中,MOSFET 通常连接到没有反向并联续流二极管的电感,以在关闭器件时换向环路电流。因此,器件必须在工作阶段吸收先前存储在电感中的所有能量。因此,只要存储的能量足够高,MOSFET 就会进入雪崩模式,导致器件结温逐渐升高 [6]。在大电流雪崩操作期间,会产生高浓度的热载流子,这可能会导致界面和绝缘 (氧化物) 层的退化。
TA2020-020 是一款功率(高电流)放大器,工作在相对较高的开关频率下。放大器的输出在驱动高电流的同时,以高速在电源电压和地之间切换。该高频数字信号通过 LC 低通滤波器,以恢复放大的音频信号。由于放大器必须驱动电感 LC 输出滤波器和扬声器负载,因此放大器输出可能被输出电感中的能量拉高至电源电压以上和地以下。为避免 TA2020-020 受到可能造成损坏的电压应力,良好的印刷电路板布局至关重要。建议在所有应用中使用 Tripath 的布局和应用电路,并且只有在仔细分析任何更改的影响后才可以偏离。下图是 Tripath TA2020-020 评估板。板上最关键的组件是电源去耦电容。电容 C674 和 C451 必须放置在引脚 22 (VDD2) 和 19 (PGND2) 的旁边,如图所示。同样,电容 C673 和 C451B 必须放置在引脚 25 (VDD1) 和 28 (PGND1) 的旁边,如图所示。这些电源去耦电容不仅有助于抑制电源噪声,更重要的是,它们可以吸收由放大器输出过冲引起的 VDD 引脚上的电压尖峰。类似地,肖特基二极管 D1、D2、D3 和 D4 可最大程度降低相对于 VDD 的过冲,肖特基二极管 D702、D703、D704 和 D728 可最大程度降低相对于电源接地的下冲。为了获得最大效果,这些二极管必须位于输出引脚附近,并返回到各自的 VDD 或 PGND 引脚。二极管 D1、D2、D3 和 D4 仅适用于 VDD>13.5V 的应用。在高电流开关事件(例如短路输出或在高电平下驱动低阻抗)期间,输出电感器反激也可能导致电压过冲。如果这些电容器和二极管距离引脚不够近,则可能会对部件造成电气过应力,从而可能导致 TA2020-020 永久损坏。输出电感器 L389、L390、L398 和 L399 应放置在靠近 TA2020-020 的位置,而不会影响靠近放置的电源去耦电容器和二极管的位置。将输出电感器放置在靠近 TA2020-020 输出引脚的位置是为了减少开关输出的走线长度。遵循此准则将有助于减少辐射发射。
适用于高可靠性应用的高压 GaN HEMT 现提供 15 A 和 30 A 低电流版本 加利福尼亚州米尔皮塔斯 – 2021 年 1 月 6 日 – Teledyne e2v HiRel 正在为其基于 GaN Systems 技术的业界领先的 650 伏高功率产品系列添加两款新型加固型 GaN 功率 HEMT(高电子迁移率晶体管)。两款新型高功率 HEMT TDG650E30B 和 TDG650E15B 分别提供 30 安和 15 安的低电流性能,而去年推出的原始 650 V TDG650E60 可提供 60 A 的电流。这些 650 V GaN HEMT 是市场上可用于要求高可靠性的军事、航空电子和太空应用的最高电压 GaN 功率器件。它们非常适合电源、电机控制和半桥拓扑等应用。它们采用底部冷却配置,具有超低 FOM Island Technology® 芯片、低电感 GaNPX® 封装、>100 MHz 的超高频开关、快速且可控的下降和上升时间、反向电流能力等。Teledyne e2v HiRel 业务开发副总裁 Mont Taylor 表示:“我们很高兴继续为太空等需要最高可靠性的应用推出 650 V 系列高功率 GaN HEMT。我们相信,这些新器件的较小尺寸封装将真正使客户受益于设计最高功率密度项目。”TDG650E15B 和 TDG650E30B 都是增强型硅基 GaN 功率晶体管,可实现大电流、高击穿电压和高开关频率,同时为高功率应用提供非常低的结到外壳热阻。氮化镓器件已经彻底改变了其他行业的电源转换,现在采用耐辐射的塑料封装,经过严格的可靠性和电气测试,以确保关键任务的成功。这些新型 GaN HEMT 的发布为客户提供了关键航空航天和国防电源应用所需的效率、尺寸和功率密度优势。对于所有产品线,Teledyne e2v HiRel 都会针对最高可靠性应用进行最严格的认证和测试。对于功率器件,此测试包括硫酸测试、高海拔模拟、动态老化、高达 175°C 环境温度的阶跃应力、9 伏栅极电压和全温度测试。与碳化硅 (SiC) 器件不同,这两种器件可以轻松并联实现,以增加负载电流或降低有效 RDSon。这两种新器件现在都可以订购和立即购买。
对可持续运输的需求导致电动汽车的迅速发展,但是电池限制了电动汽车的行驶里程和寿命。车辆中的电池由几千个电池电池组成,每个电池电池都有2-4 V左右的电压,并且在不同的模块中互连并平行,它们共同有助于电池电压和电源容量。细胞制造和其他因素的变化意味着单个细胞电压和细胞之间的分布百分比在操作过程中可能会有所不同。每个单元具有最低和最高的电压限制集,必须保留这些限制,以使电池不被破坏。由于细胞间的变化,某些单元格的速度比其他细胞更快,这限制了电池的性能。因此,需要单个单元控制,以最大程度地利用电池提供的能量。电动汽车的常规推进系统具有电池,可为用于推进的电机提供能量。电池与直流电流一起工作,而车辆中的电动机则由交替电流提供动力,这意味着需要电源转换器,可以将DC从电池转换为电动机的交替电流。这样的功率电子转换器用于将直流电流转换为交替电流,称为逆变器,而这些转换器又使用半导体开关来创建交替的电流。通过在倒置中控制半导体“ ON”和“ AV” - period来控制Ethlete之外的,以便输出接收交替的电流。,以便输出接收交替的电流。这些过渡在“ on”和“ by”之间交替的速度称为开关频率。在常规动力总成中,通常使用一个逆变器,可与两个级别一起使用,因此具有两个级别的外科医生,这些逆变器具有很高的总和和谐失真,并且需要在出口(交流侧)的过滤器。总和和谐失真是波形与纯窦波的偏差。总和和谐失真越高,电机中的损耗越大。为了减少这些问题,建议使用抗战斗的模块化级别转换器(来自英语电池集成模块多级转换器的BI-MMC)提出,提出和评估。在BI-MMC中,电池组中的较小的电池模块链接到逆变器,然后成为称为子模块的单元。以及常规电池组中的电池模块,可以将这些订阅组合在一起并平行,以使它们可以直接交流电流直接传递到电气机。BI-MMC因此具有增加的可控性,并可以改善电池组的寿命。此外,BI-MMC在结果中的总和和谐失真较低,这进一步改善了动力总成的影响。论文中的第一个贡献是分析和评估三相和六阶段BI-MMC的不同拓扑。作为比较的基础,常规的两级逆变器用于40吨400千瓦的卡车。评估表明,大多数BI-MMC的损失低于常规的两级逆变器。第二个贡献是对每个串联细胞的数量如何影响
2 1 [8] M B1 电机输出 B,通道 1。当相位 1 为高电平时,电机电流从 M A1 流向 M B1。3 2 [10] E 1 共发射极,通道 1。此引脚连接到传感电阻 R S 接地。4 3 [11] M A1 电机输出 A,通道 1。当相位 1 为高电平时,电机电流从 M A1 流向 M B1。5 4 [12] V MM1 电机电源电压,通道 1,+10 至 +40 V。V MM1 和 V MM2 应连接在一起。6,7 5, 6, [1-3, 9, GND 接地和负电源。注意:这些引脚用于散热。18,19 17, 18 13-17, 确保所有接地引脚都焊接到足够大的铜接地平面 28] 上,以实现高效散热。8 7 [18] V R1 参考电压,通道 1。控制比较器阈值电压,从而控制输出电流。9 8 [19] C 1 比较器输入通道 1。此输入检测传感电阻上的瞬时电压,由内部数字滤波器或可选的外部 RC 网络滤波。10 9 [20] 相位 1 控制输出 M A1 和 M B1 处的电机电流方向。当相位 1 为高电平时,电机电流从 M A1 流向 M B1。11 10 [21] Dis 1 禁用通道 1 的输入。当为高电平时,所有四个输出晶体管均关闭,导致输出电流迅速降至零。12 11 [22] RC 时钟振荡器 RC 引脚。将一个 12 kohm 电阻连接到 V CC 并将一个 4 700 pF 电容连接到地,以获得 23.0 kHz 的标称开关频率和 1.0 µ s 的数字滤波器消隐时间。 13 12 [23] V CC 逻辑电压电源,标称值为 +5 V。 14 13 [24] Dis 2 禁用通道 2 的输入。当为高电平时,所有四个输出晶体管均关闭,从而导致输出电流迅速降至零。15 14 [25] 相位 2 控制输出 M A2 和 M B2 处的电机电流方向。当相位 2 为高电平时,电机电流从 M A2 流向 M B2。16 15 [26] C 2 比较器输入通道 2。此输入检测传感电阻上的瞬时电压,该电压由内部数字滤波器或可选的外部 RC 网络滤波。17 16 [27] V R2 参考电压,通道 2。控制比较器阈值电压,从而控制输出电流。20 19 [4] V MM2 电机电源电压,通道 2,+10 至 +40 V。V MM1 和 V MM2 应连接在一起。21 20 [5] M A2 电机输出 A,通道 2。当相位 2 为高电平时,电机电流从 M A2 流向 M B2。22 21 [6] E 2 共发射极,通道 2。此引脚连接到接地的传感电阻 R S。23 22 [7] M B2 电机输出 B,通道 2。当第 2 相为高电平时,电机电流从 M A2 流向 M B2。1,24 NC SO 引脚 1 和 24 为“未连接”
2 1 [8] M B1 电机输出 B,通道 1。当相位 1 为高电平时,电机电流从 M A1 流向 M B1。 3 2 [10] E 1 共发射极,通道 1。此引脚连接到传感电阻 RS 到地。 4 3 [11] M A1 电机输出 A,通道 1。当相位 1 为高电平时,电机电流从 M A1 流向 M B1。 5 4 [12] V MM1 电机电源电压,通道 1,+10 至 +40 V。V MM1 和 V MM2 应连接在一起。 6,7 5, 6, [1-3, 9, GND 接地和负电源。注意:这些引脚用于散热。 18,19 17, 18 13-17, 确保所有接地引脚都焊接到适当大的铜接地平面 28] 上,以实现有效散热。 8 7 [18] V R1 参考电压,通道 1。控制比较器阈值电压,从而控制输出电流。 9 8 [19] C 1 比较器输入通道 1。该输入感测感测电阻两端的瞬时电压,由内部数字滤波器或可选外部 RC 网络滤波。 10 9 [20] 相位 1 控制输出 M A1 和 M B1 处的电机电流方向。当相位 1 为高电平时,电机电流从 M A1 流向 M B1。 11 10 [21] Dis 1 通道 1 的禁用输入。当为高电平时,所有四个输出晶体管都关闭,导致输出电流迅速减小至零。 12 11 [22] RC 时钟振荡器 RC 引脚。将一个 12 kohm 电阻连接到 V CC ,并将一个 4 700 pF 电容连接到地,以获得 23.0 kHz 的标称开关频率和 1.0 µ s 的数字滤波器消隐时间。 13 12 [23] V CC 逻辑电压电源,标称值为 +5 V。 14 13 [24] Dis 2 通道 2 的禁用输入。当为高电平时,所有四个输出晶体管都将关闭,从而导致输出电流迅速减小到零。 15 14 [25] 相位 2 控制输出 M A2 和 M B2 处的电机电流方向。当相位 2 为高电平时,电机电流从 M A2 流向 M B2。 16 15 [26] C 2 比较器输入通道 2。该输入感测传感电阻两端的瞬时电压,该电压由内部数字滤波器或可选的外部 RC 网络滤波。 17 16 [27] V R2 参考电压,通道 2。控制比较器阈值电压,从而控制输出电流。 20 19 [4] V MM2 电机电源电压,通道 2,+10 至 +40 V。V MM1 和 V MM2 应连接在一起。 21 20 [5] M A2 电机输出 A,通道 2。当相位 2 为高电平时,电机电流从 M A2 流向 M B2。 22 21 [6] E 2 共发射极,通道 2。此引脚连接到接地的传感电阻 RS。 23 22 [7] M B2 电机输出 B,通道 2。当相位 2 为高电平时,电机电流从 M A2 流向 M B2。1,24 NC SO 引脚 1 和 24 为“未连接”
of GaN/p-Si based solar cells N. S. Khairuddin a , M. Z. Mohd Yusoff a,* , H. Hussin b a School of Physics and Material Studies, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia b School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah阿拉姆(Alam),马来西亚雪兰莪(Selangor),在这项研究中,我们使用PC1D模拟器来证明基于硝酸盐(GAN)的太阳能电池模型的性能分析。已经发现,当GAN底物的层厚度生长时,太阳能电池的效率会降低。这是通过比较GAN和硅底物上的掺杂浓度和层厚度来发现的。随着P掺杂SI层的厚度升高,细胞效率恰好增加。GAN和P -Silicon的最佳掺杂浓度分别为1x10 18 cm -3和1x10 17 cm -3。与其他设计相比,GAN/P-Silicon太阳能电池的效率最高25.26%。(2023年6月21日收到; 2023年9月1日接受)关键字:太阳能电池,甘恩,氮化碳,硅,硅,pc1d1。简介硝酸盐(GAN)设备自然会获得市场份额。gan收入将以75%的累积年增长率扩大。电力电子专家目前面临与电路设计技术,被动组件选择,热管理和实验测试有关的问题,这是由于其高开关速度和操作开关频率[2]。gan合金具有可调的直接间隙,这就是光伏使用它们的原因。用于光电和微电子学中的应用,III-V硝酸盐(如氮化岩(GAN),氮化铝(ALN)和硝酸铝(Innride)及其合金及其合金都特别吸引人。他们的带盖是最初[3]最诱人的地方之一。si还旨在在低温血浆增强化学蒸气沉积(PECVD)方法中作为N型掺杂剂掺入,因为它是高温GAN中的众所周知的供体掺杂剂[4]。由于其直接带隙(例如〜3.4 eV),整个可见光谱中的透射率超过82%,高电子迁移率(〜1,000 cm2/vs)[5] [5],高导热率和出色的化学稳定性和出色的化学稳定性[6],氮化物(GAN)具有出色的光学和电气性能。Ingan材料系统的带隙现在跨越了红外线到紫外线。INGAN材料系统对于光伏应用是有利的,因为它可用于制造第三代设备,例如中型太阳能电池,除了高效的多官方太阳能电池外,由于其直接和宽的带隙范围[7]。氮化物具有有利的光伏特性,例如低有效的载体,高迁移率,高峰值和饱和速度,高吸收系数和辐射耐受性,除了宽带间隙范围[8]。IIII-V硝酸盐技术能够生长高质量的晶体结构并创建光电设备的能力证实了其高效光伏的潜力[9]。上述情况使我们能够控制费米水平显然随着gan厚度的上升而向上移动,并减少传导带最小值(CBM)值和价值最大(VBM)值[10]。压缩应力的松弛和较厚的GAN层的载体浓度增加是依赖厚度依赖性带结构的初步解释[11]。