• 增强信号处理、频率范围和瞬时带宽 (IBW) - 提高系统应对下一代 CIED 威胁和多功能 RF 要求的能力 • 通用开放和安全软件开发环境 - 降低许可成本并实现跨适用 EW 平台的技术共享 • 增强用户界面 - 开发新的直观界面以增强功能 • 分布式 EW - 与 ONR 协调拟议的无处不在的边缘 FNC • 智能资源管理 - 研究 AI/ML 定制使用系统资源并提高兼容性
技术在全球几乎每个行业中都破坏和加速了变化。随着技术的发展迅速,当今的组织面临重大变化(Colbert,Yee和George,2016年)。今天,高科技中小型企业(SME)在全球市场中扮演着越来越重要的角色。这些公司被描述为“天生的全球”或“国际新企业”,从其成立开始就具有强烈的国际关注(Bell等人。2003; Coviello,2006年; Oviatt和McDougall 1994,2005)。 使用创新技术和新的商业模式创建新市场的新国际企业特别有助于高科技公司使用数字化技术来收集和分析有关国际市场和客户反馈的数据,以加快决策过程,因为它们依赖迭代,渐进的产品开发环境(Rasmussen&Tanev&Tanev,rasmussen&Tanev,2015; tanev; tanev; tanev; tanev; tanev; tanev; tanev; tanev; tanev; tanev; tanev; tanev; tanev; tanev》,2017年。2003; Coviello,2006年; Oviatt和McDougall 1994,2005)。使用创新技术和新的商业模式创建新市场的新国际企业特别有助于高科技公司使用数字化技术来收集和分析有关国际市场和客户反馈的数据,以加快决策过程,因为它们依赖迭代,渐进的产品开发环境(Rasmussen&Tanev&Tanev,rasmussen&Tanev,2015; tanev; tanev; tanev; tanev; tanev; tanev; tanev; tanev; tanev; tanev; tanev; tanev; tanev; tanev》,2017年。
摘要 开源指令集架构 RISC-V 在首次发布后就引起了人们的关注。该 ISA 提供了一组精简且可扩展的指令,而不会损害典型处理器的任何功能。2020 年,阿尔托大学启动了一个 RISC-V 处理器项目,以在阿尔托大学开展处理器研究并将其用作其他项目的 CPU。在此项目期间,称为“A-core”的处理器已发展成为一个功能强大的内核,可以驱动各种外围设备并运行汇编或 C 程序。本论文的目标是通过开发基于 RISC-V 的自动化开发平台来设计 A-core 的完整物理实现。通过开发物理实现,可以在实际物理约束下验证和确认处理器。此外,物理实现允许更广泛地开发软件,将处理器用作教学和驱动其他芯片的一部分。在这项工作期间开发的基于 RISC-V 的自动化开发环境提供了设计和研究物理实现的工具。该环境还提供了验证和确认工具,以便能够以最小的缺陷制造实现。因此,A-core 的物理实现包括在设计过程中添加的所有功能,例如加速器、流水线和微小的结构变化,并使用自动化开发环境工具验证了设计。该设计最终被送去制造。从制造商那里到达后,必须通过测量来验证设计,之后才能说它完全可以正常工作,并且可以在阿尔托大学未来的工作中使用。
ACR是在受监管和自愿性碳市场中运营的全球领先碳信贷计划。成立于1996年,是世界上第一个私人自愿温室气体(GHG)注册表,ACR对碳市场的完整性充满信心,以促进变革型气候结果。ACR通过开发环境严格,基于科学的标准和方法的发展以及通过其透明注册表系统的报道来确保碳信用质量。ACR由Winrock International的全资非营利子公司环境资源信托有限责任公司约束。
OpenText Intelligence Analytics Studio 提供最复杂的即席报告设计选项。此集成开发环境中的拖放功能允许高级用户组装和格式化报告以获得个性化的业务见解。用户可以混合、转换和应用业务逻辑到数据,动态添加新来源,并轻松在浏览器中创建即席报告。OpenText Intelligence Analytics Studio 包括数百个 HTML5 图表、小工具和地图、商业数据驱动程序、元数据层和多维数据集设计以及用于创建交互式和分析内容的缓存功能。
与传统解决方案相比,PIC64-HPSC 系列高性能航天计算微处理器及其配套软件开发环境可将航天器计算机的计算能力提高 100 倍。PIC64-HPSC MPU 采用了虚拟化、人工智能 (AI)、以太网时间敏感网络 (TSN)、融合以太网远程直接内存访问 (RoCE) v2、PCIe ®、Compute Express Link ® (CXL ® ) 2.0 和后量子加密等先进技术,重新定义了未来太空探索和空间处理的可能性,应用范围从低地球轨道 (LEO) 延伸到深空深处。
ARM 提供基于硬件的矢量浮点 (VFP) 协处理器,可加速浮点运算。ARM VFP 支持以 CPU 时钟速度执行单精度和双精度加法、减法、乘法、除法、乘法累加运算和除法/平方根运算。ARM VFP 可用于提高成像应用程序(如缩放、2D 和 3D 变换、字体生成、数字滤波器或任何使用浮点运算的应用程序)的性能。由于 ARM VFP 是由 ARM 开发和支持的协处理器,因此它在各种工具链、RTOS 和操作系统(如 Keil MDK 开发环境或 Linux)中都受到支持。ARM VFP 符合 IEEE 754 标准。
TI 灵活的软件架构和开发环境让您可以在任何地方训练模型,并使用您最喜欢的行业标准 Python 或 C++ 应用程序编程接口 (API)(来自 TensorFlow Lite、ONNX RunTime 或 TVM 和 SageMaker Neo with Neo AI DLR 运行时引擎)仅用几行代码即可将其编译并部署到 TI 硬件上。在这些行业标准运行时引擎的后端,我们的 TI 深度学习 (TIDL) 模型编译和运行时工具让您可以为 TI 硬件编译模型,将编译后的图形或子图部署到深度学习硬件加速器上,并从处理器获得最佳推理性能,而无需任何手动工具。