摘要 ─ 提出了一种基于平面结构的嵌套互补开口环谐振器 (CSRR)。这项工作的主要目的是获得更高的品质因数 (Q 因子),同时将复介电常数的误差检测降至最低。传感器在 3.37GHz 谐振频率下工作,并通过 ANSYS HFSS 软件进行仿真。随后,在传感器上放置了多个被测材料 (MUT),制造并测试了设计的传感器。结果实现了 464 的高空载 Q 因子。理论、模拟和测量的误差检测参数结果具有很好的一致性,低于 13.2% 的实部介电常数和 2.3% 的损耗角正切。所提出的传感器在食品工业、生物传感和制药工业应用中非常有用。
在接近太赫兹频率下工作的下一代无线通信系统中,具有尽可能低的介电常数和损耗因子的电介质基板变得至关重要。在本文中,我们采用模板辅助溶胶-凝胶法合成了高度多孔(98.9% ± 0.1%)和轻质二氧化硅泡沫(0.025 ± 0.005 g/cm 3 ),它们具有极低的相对介电常数(300 GHz 时 ε r = 1.018 ± 0.003)和相应的损耗因子(300 GHz 时 tan δ < 3 × 10 −4)。在泡沫板上浸涂一层纤维素纳米纤维薄膜后,可获得足够光滑的表面,在此表面上可方便地沉积对电子和电信设备应用很重要的导电金属平面薄膜。在这里,银薄膜的微图案通过荫罩溅射到基板上,以展示双开口环谐振器超材料结构作为在亚太赫兹波段工作的射频滤波器。
基于苯硼酸的水凝胶夹层射频 (RF) 谐振器被证明是一种用于监测葡萄糖的高响应、无源和无线传感器。结构由未锚定的电容耦合开口环组成,中间是葡萄糖响应水凝胶。苯硼酸水凝胶会根据环境葡萄糖浓度表现出体积和介电变化——这些变化被有效地转化为夹层 RF 传感器谐振响应的大幅变化。这些微型、可拉伸和可扩展的传感器(5 毫米 × 5 毫米 × 250 微米)不需要传感节点的微电子或电源,可以通过近场耦合远程读取。传感器表现出高灵敏度(每 150 毫克/分升葡萄糖谐振频率偏移约 10%——相当于 50 MHz),检测限为 10 毫克/分升,对碳水化合物浓度突然变化的阶跃响应时间约为 1 小时。值得注意的是,这些传感器在本文描述的时间段内(室温下 45 天)没有表现出信号漂移或滞后现象。我们通过连接单个 LED 将传感器转变为生物电子 RF 报告标签——它们通过发射光远程报告葡萄糖浓度。我们预计,RF 读出和苯硼酸基水凝胶的非降解性和长期性将使生物传感器能够长期远程读取葡萄糖。
项目详情:该项目将开发一种用于智能车辆、家电或机器人操纵器的传感表面,该表面结合了本体感受、触觉和多种其他感觉。该表面将采用超材料的形式,其物理特性使其能够出色地控制其表面上的电磁信号流。这种“超皮肤”的优势在于其简单性 - 扩展表面上密集的“超原子”传感器网络将能够仅使用单个电气连接进行本体感受形状确定、损坏检测、附近物体的接近警告以及各种其他形式的感应。如果使用分立传感器和电路(当前的行业标准)制作这种皮肤,那么它可能非常复杂且成本高昂。它将需要许多数据总线线路、信号调节电路和用于过滤的本地处理。此外,它的功耗将使其成本高昂且效率低下。即使将布线内置在结构中,多个传感器也会给原本简单的物体增加很多复杂性。我们的方法截然不同,利用了最近开发的技术,使用超材料及其支持的电磁信号。我们不使用定制电路板或嵌入式线路,而是采用由“元原子”组成的超材料 - 耦合、无源(无动力)电磁谐振器,如开口环。这种 Meta-Skin 只需要在馈电点进行电气连接和处理,每个馈电点都可以处理数百个传感位置。Meta-Skin 的属性源于它能够支持限制在超材料中的电磁表面波(驻波)。我们的创新是利用这些驻波的属性来提供有关表面状况和环境的信息。表面的扭曲、元原子的损坏或附近物体的存在将以可预测的方式改变其驻波,并且可以通过精心设计元原子及其配置来控制这种改变的程度。该项目将以埃克塞特大学现有的工作为基础,并与牛津大学的合作者合作,开发和集成带有这些 Meta-Skin 的传感器,以增加它们可以感知的刺激类型。这将结合超材料、变形结构和其他先进材料的理念,开发用于压力(触摸)、剪切力、温度、湿度等的传感器。该项目的第一年将专注于开发其中一种传感器,然后将其与现有的元皮肤集成。然后将设计更多传感器,并用于创建多感官表面。对于项目的最后阶段,可以选择与牛津大学的合作者合作,将这些元皮肤应用于机器人执行器或智能车辆的组件,并在“真实世界”场景中对其进行测试。该项目将与英国顶尖大学和工业界的合作者合作,将基础物理学推向令人兴奋且具有影响力的现实世界应用。