如今,隧道掘进机 (TBM) 因其开挖速度高、对围岩影响小、安全标准高而在世界各地被广泛使用。岩体可钻孔性被视为评估 TBM 在节理岩体中性能的主要参数之一。可钻孔性是反映岩体和切削刀具之间相互作用的参数。本文旨在利用为利用从伊朗克尔曼输水隧道项目收集的数据(TBM 操作和地质参数)而准备的数据库来说明节理几何参数对可钻孔性的影响。为此,首先研究了影响可钻孔性的节理参数(方向、间距、持久性)。然后,使用总破裂因子(Bruland)和持久性分类来研究所有三个参数对可钻孔性的影响。结果表明,通过提高节理持久性也可以提高可钻孔性。此外,随着节理持久性的增加,破裂因子(K s-total )对可钻性的影响也随之增大。本文还根据对数据库的分析,提出了一个新参数,称为“岩石节理指数”(RJI)。基于 RJI 估算的可钻性值与实际钻进速度具有很好的一致性。
在软/风化岩石、砂岩、硬粘土、砾石、鹅卵石、硬红土、水结碎石、湿混碎石、任何类型的沥青混合料地毯、沥青路面、底板、小路和硬核、石灰混凝土、普通水泥混凝土、石工和所有类型的地下砖/砌块砌体、岩石巨石等中开挖地基、下部结构、水箱、水坑、墙壁、洞室、人孔、沟渠、电线杆、坑和一般建筑工程,深度/升程达 1.5 米。从地面测量,包括修整/修剪两侧、平整底部、人工脱水、清除茂盛植被、回填厚度不超过 200 毫米的层、浇水、固结、压实以达到不低于 97% 的改良普洛克特密度(符合相关 IS)、堆成可测量的堆以备将来在业主空间内使用或根据指示在 150 米的初始范围内处置、装载、卸载、平整(不包括支撑、支撑等),按照主管工程师的指示完成。注意:1)费率包括处理/支持现有公用设施,如电缆、排水管、管道、水管等。2)还包括特许权使用费和其他税费(如果有)。
摘要 摘要 准确预测隧道施工引起的地表沉降对于保证隧道工程安全施工和决策至关重要。本文建立了一种用于预测盾构隧道施工引起地层变形的物理信息神经网络(PINN)模型。该模型将隧道收敛变形与隧道开挖位置的关系纳入深度神经网络(DNN)框架中。考虑到多地层的地质特点,提出了一种多物理信息神经网络(MPINN)模型,在统一的框架下表示不同地层的物理信息。结果表明,MPINN模型可以高度再现有限差分法的计算结果,并能准确预测考虑复合地层的复杂地质信息的隧道施工引起的地表沉降。由于MPINN模型具有完整的物理机制,适用于隧道施工引起的地表沉降问题,可以预测不同地质和几何条件下的隧道施工引起的地表沉降。基于实测数据,提出的MPINN模型能够准确预测监测断面地表沉降曲线,为隧道施工过程中地表沉降预测预警提供参考。
巨型麦哲伦望远镜的设计、制造和现场施工正在进行中。主镜所需的七个直径为 8.4 米的镜面部分中,两个已经完成并入库,第三个已按规格抛光,另外三个已经铸造并处于不同的制造阶段,玻璃已准备好用于铸造最后的部分。望远镜结构即将进行最终设计审查和开始制造。智利拉斯坎帕纳斯场址所需的住宅建筑和其他支持施工的设施已经完工。外壳和望远镜墩座地基的硬岩开挖已经完成。外壳处于最终设计阶段。第一个离轴自适应次镜正在制造中,主镜单元已经制造完毕并正在测试中。两个自适应光学和相位测试台正在制造中,用于风险降低测试和组件鉴定。我们正在根据不断变化的项目因素(包括 US-ELT 计划)修改制造和施工计划,该计划在美国国家科学院的 ASTRO2020 十年调查中名列前茅。关键词:GMT、GMTO、巨型麦哲伦望远镜、极大望远镜
发掘过程中的抽象堵塞是机械挖掘中的常见问题之一。在切割器头部堵塞的影响因素中,我们可以提到细土颗粒(200个网状筛),土壤水分和土壤类型的百分比。在这项研究中,为了研究实验室中的隧道发掘机制,设计和构建了隧道开挖机实验室模拟器。该设备的特征是其水平操作,切割机头的低旋转速度,测试过程中销与新鲜土壤的连续接触,以及在测试过程中连续的添加剂与特定的注入压力。研究了研究细粒度,土壤含量和泡沫注入比(FIR)对堵塞,消耗能量以及切割工具的平均磨损的影响。结果表明,随着细土颗粒百分比从90%增加到100%,切割工具的堵塞增加了50%。同样,随着土壤水分从干燥状态增加到5%的水分含量,切割机头的堵塞是微不足道的,此后,随之而来的是,水分从10%增加到25%,堵塞量增加了178%,每次测试中消耗的能量量增加了84%。此外,通过将泡沫注入比从40%增加到60%,平均堵塞减少了81%,而切割工具的磨损平均降低了62%。
(a)至(c)1957年《矿山和矿物(开发与法规)(MMDR)法》第23C条(MMDR)法案,使州政府有权制定规则,以防止非法采矿,运输和存储矿产的非法采矿,出于与之相关的目的。因此,对非法采矿的控制主要是州政府的责任。中央政府通过不时通过政策举措来支持和增强这些努力。中央政府为预防和控制非法采矿所采取的一些步骤如下:(i)通过《 MMDR(修正案)法案》(MMDR(AMINDMENT)法案)对1957年的《 MMDR法》进行了修改,其中30b和30c第30b和30c条与第21和23C条的互联网阅读,Inter-Alia,Inter-Alia,提供严格的责任,为非法分钟提供严格的责任。非法采矿已被监禁,该期限可能会延长五年,并且可能会延长该地区每公顷的五十万卢比。也已为设立特别法院的规定,目的是对与非法采矿有关的罪行进行快速审判。(ii)根据1957年《 MMDR法》第5(2)(b)条,已经为大型矿物质授予采矿租赁的先决条件。采矿计划包含了五年的年度开挖计划的详细信息,除了有关矿产储量,地质,岩性,采矿类型,采矿区的康复和修复等的其他基本细节。
简便、快速、可靠的隧道稳定性评价方法可以促进隧道工程的建设和发展。现阶段与隧道稳定性有关的问题可以通过理论分析法、模型试验法或数值分析法进行很好的分析,但对于重要性较高、决策设计周期较短、施工工期较紧迫的工程,上述方法难以得到有效的分析。本文针对黏土隧道稳定性评价问题开展研究。首先,提出以应力、应变状态为变量的状态函数,预测隧道开挖引起的围岩应力、应变状态,以表征围岩的物理力学状态(又称稳定状态);其次,模拟围岩物理力学性质的非线性劣化,给出隧道稳定性储备系数的表达式及计算方法;最后,通过黏土隧道算例,将所提方法的计算结果与强度折减法、极限平衡法进行了比较。通过对拱顶、边墙、拱底3个特征点的对比可知,黏土隧道的稳定储备系数小于强度折减法和极限平衡法计算的结果;采用本文方法计算得到的极限位移值比强度折减法计算的结果更接近现场监测数据,因此本研究可以更好地应用于黏土隧道的稳定性评价。
摘要 隧道掘进机施工过程中涉及的主要问题之一是尾部间隙注浆。该间隙位于隧道衬砌外径和开挖边界之间,并用高压注浆材料填充。本文研究了 FLAC3D 软件中三种不同的间隙注浆建模方法,特别关注注浆材料硬化过程的影响。在第一种方法中,将注浆在注入过程中模拟为液体,考虑 TBM 的推进及其硬化时间,将注浆特性转变为固体注浆的性质。在第二种方法中,在模型中将注浆材料从注入开始时就视为具有固体注浆性质,忽略液相。在第三种方法中,不考虑模型几何中的回填注浆区域,只在盾构末端和已安装管片后方施加注入压力。根据最大地表沉降评估了这三种方法的有效性。这三种方法估算的表面沉降量不同,但第一种方法的结果更接近监测数据。同样作为敏感性分析,在这项工作中,我们研究了液体和固体灌浆材料的弹性模量对表面沉降量的影响,这有助于更准确地了解灌浆混合物的影响。
摘要:准确评估岩石强度是几乎所有岩石项目(如隧道和开挖)的一项基本任务。人们尝试了许多方法来创建计算无限制抗压强度 (UCS) 的间接技术。这通常是由于收集和完成上述实验室测试的复杂性。本研究应用了两种先进的机器学习技术,包括极端梯度提升树和随机森林,用于根据无损检测和岩相学研究预测 UCS。在应用这些模型之前,使用 Pearson 卡方检验进行了特征选择。该技术选择了以下输入来开发梯度提升树 (XGBT) 和随机森林 (RF) 模型:干密度和超声波速度作为无损检测,云母、石英和斜长石作为岩相学结果。除了 XGBT 和 RF 模型外,还开发了一些经验方程和两个单决策树 (DT) 来预测 UCS 值。本研究的结果表明,在系统精度和误差方面,XGBT 模型在 UCS 预测方面优于 RF。XGBT 的线性相关性为 0.994,其平均绝对误差为 0.113。此外,XGBT 模型优于单个 DT 和经验方程。XGBT 和 RF 模型也优于 KNN(R = 0.708)、ANN(R = 0.625)和 SVM(R = 0.816)模型。本研究的结果表明,XGBT 和 RF 可有效用于预测 UCS 值。
土方工程 1. 土方工程应按照合同图纸和规范第 312323 节“开挖、回填和填充”的要求进行。 2. 有关土壤堆场管理和多余/不合适材料的场外处置,请参阅合同图纸 N101 中的环境土壤说明。 3. 有关地下水排放,请参阅合同图纸 N101 中的环境脱水排放说明。 4. 填筑、回填和恢复坡度时,使用符合 NJDOT 指定 I-12 要求的材料,如规范第 312323 节所述。5. 使用机械捣固机或其他经工程师批准的设备,在现有设施和建筑物四 (4) 英尺范围内压实填筑、回填、密级骨料基层和沥青,以尽量减少建筑物和设施的压力。6. 根据附录 A“提交材料”第 1.04 项和第 D 项要求提交的质量控制计划执行质量控制。 7. 工程师可根据规范 312323 进行质量验收检查和测试。8. 所有不能用于回填或工作期结束时填充的挖掘材料应运输至图纸 N201 所示的堆料区。9. 如果挖掘土壤含有杂物,例如但不限于木材、金属、塑料、垃圾,请按照工程师的指示将杂物与挖掘土壤分开。承包商应