n-羧基氢气开环聚合诱导的自组装(NCA ROPISA)为单一步骤产生基于聚(氨基酸)的纳米颗粒的便利途径,至关重要地避免了对聚合后自组装的需求。大多数NCA Ropisa的例子都利用了聚(乙二醇)(PEG)亲水性稳定块,但是这种不可生物降解的油源性聚合物可能会在某些个体中引起免疫反应。因此,高度寻求替代水溶性聚合物。这项工作报告了通过与L-苯基丙氨酸-NCA(L-PHE-NCA)和Alanine-NCA(ALA-NCA)(通过含有的NCA Ropisa)的链链延伸的链链延伸,该纳米颗粒的合成。所得的聚合结构主要由各向异性,棒状纳米颗粒组成,形态学主要受疏水聚(氨基酸)的二级结构的影响,从而实现其形成。
为了寻找运动任务中深度强化学习的简单基线,我们提出了一种无模型的开环策略。通过利用先验知识和简单振荡器的优雅来产生周期性的关节动作,它在五个不同的运动环境中实现了可观的性能,其中许多可调参数是DRL算法通常所需的数千分之一。我们使用开环振荡器进行了两个其他实验,以确定这些算法的当前缺点。我们的结果表明,与基线相比,DRL暴露于传感器噪声或故障时,DRL更容易降解。此外,我们使用弹性四足动物展示了从模拟到现实的成功转移,其中RL在没有随机或奖励工程的情况下失败。总体而言,拟议的基线和协会实验突出了DRL在机器人应用中的现有局限性,提供了有关如何解决它们的见解,并鼓励对复杂性和一般性的成本进行反思。
简介。不受束缚的微型机器人可以以微创方式输送治疗剂 [1],进入人体其他无法到达的区域 [2, 3]。这些微型机器人在生物医学中的潜在应用非常广泛,从传感 [4-7] 到药物输送 [8-10],甚至再生医学 [11] 等。特别是,微型机器人非常适合再生医学中的细胞应用,因为它们可以快速穿透细胞并实现有效的细胞内输送 [3]。旨在修复受损或患病的组织和器官 [12] 的细胞疗法需要将细胞精确运送到目标位置进行移植 [13, 14]。任何细胞输送失败都可能导致严重的免疫反应 [15]。因此,确保准确、无创地输送细胞至关重要,而微型机器人可以发挥至关重要的作用 [16]。
无-4.2 4.1 1.04 EXO-NI 2.0 4.7 4.9 4.9 1.02 ENDO-NI 1.9 4.7 5.3 1.02 ENDO-ONI 1.2 4.7 5.8 5.8 1.02 ENDO-ONI * ENDO-ONI * 1.0 4.5 5.0 1.02 ENDO-PONI 〜0 4.9 4.9 6.4 1.08使用1 H NMR SpectRoscopy计算了计算。b根据单体和催化剂的进料进行计算,并假设每个步骤都完全转换。c由THF中的三重检测尺寸排除色谱(SEC)确定,用狭窄的PMMA标准校准。
当今的现代社会严重依赖塑料材料的使用。由于塑料材料具有多样性和定制性,在过去一个世纪中,这些材料已成为我们先进生活的几乎所有领域中不可或缺的一部分,例如交通、电子、建筑、家庭或包装,其中包装占最大部分。[1] 然而,许多海洋和陆地生态系统正面临着巨大的威胁,这是由于不可降解的石油基塑料造成的环境污染仍在加剧。[1a,2] 另一方面,高生产率以及我们在关键生活情况下对塑料的依赖,例如抗击 COVID-19 需要大量由塑料制成的口罩和注射器,这表明人类需要这些材料来维持现代生活水平。[1b,3] 为了应对这些全球挑战,需要有效的废旧塑料回收策略,促进这些材料的循环利用。 [4] 除了传统的机械回收方法,如当今热塑性塑料(如聚对苯二甲酸乙二醇酯 (PET))的标准熔融加工方法外,化学
Rasmus Hauch,Bjorn Preuss,Colum Donnelly,Nicola Grandis,MarionCarré,Fernando Perez,Jonni Malacarne,Ehrik Aldana,Susannah Shattuck,Evi Fuelle,Bastiaan van de Rakt,MacIej Karpicz,Maciej Karpicz,Shemmy Majewski,negar donnellrienl negan vahrich vuhrich vuhrich vuahn vuyrich vuyrich vuyrich ryyrich ryyrich Kapadia,Anargyros Sideris,Benno Staub,Gianluca Maruzzella,Fabrizio Dini,Alexis de Vienne,Thomas Charisis,Christos theocharatos,Ezequiel Paura,Pierluigi failla,Claus Lang,Maury Shenk,florian neumeier,sim nuimenin, AsoDeMattè,Davide Fanale,Nicola Caporaso,Elisa Czerski,Ramin Karbalaie,Rui Dias Ferreira,Philip Meier,Alessandro Lazzeri,Federico Cesari,Federico Hakki Ercosman、Sina Youn、Jan-Kees Buenen、Marco Maier、Bart Kappel、Mindaugas Civilka、Jenny Romano、Lorenzo Mora、Pedro Henriques、James Black、Sébastien Bratières、Shawn Curran、Hossein (Kian) Sarpanah、Amir Bozorgzadeh、Victòria Brugada-Ramentol、Bebiana Moura、Gonçalo Consiglieri、Michael Fiorentino、Karel Bourgois、Tomas Krilavičius、Darius Amilevičius、Alexander Wijninga、Sarah Gates、Daniel Quirke、André Azevedo、Fabiana Clemente、Janhvi Pradhan Deshmukh、Philip Dawson
序列效应在帕金森病中随时间推移而恶化,并对开环和闭环丘脑底核深部脑刺激有反应 Yasmine Kehnemouyi a,b *、Matthew Petrucci a,b *、Kevin Wilkins a、Helen Bronte-Stewart a,ca 斯坦福大学医学院,神经病学和神经科学系,b 斯坦福大学工程学院,生物工程系 c 斯坦福大学医学院,神经外科系,斯坦福,加利福尼亚州,美国 *与第一作者贡献相同
1 简介 讨论风洞中测试室的文献有限。主要原因是由于测试室的静态对称性,设计简单,要么使用圆形、正方形或矩形横截面,也与已经从收缩室流向测试室的流体有关 [1]。与空气动力学测试、湍流研究或风工程中的文章相关,它表明风洞在提供数据以分析样品与流体流动之间的相互作用方面发挥着重要作用。Manan 等人测试了混合动力汽车模型,而 Clarke 等人在设计阶段测试了自动驾驶汽车的空气动力学特性 [2],[3]。其他相关研究包括测试颗粒的液压输送 [4],以及研究磁场对电导率的相互作用,例如液态金属(汞、镓、钠等),它们受霍尔效应和物质因热量而产生的熵特性的影响 [4]。在大多数风洞设计中,风洞建设的重点是如何设计收缩
1 简介 讨论风洞中测试室的文献有限。主要原因是由于测试室的静态对称性,设计简单,要么使用圆形、正方形或矩形横截面,也与已经从收缩室流向测试室的流体有关 [1]。与空气动力学测试、湍流研究或风工程中的文章相关,它表明风洞在提供数据以分析样品与流体流动之间的相互作用方面发挥着重要作用。Manan 等人测试了混合动力汽车模型,而 Clarke 等人在设计阶段测试了自动驾驶汽车的空气动力学特性 [2],[3]。其他相关研究包括测试颗粒的液压输送 [4],以及研究磁场对电导率的相互作用,例如液态金属(汞、镓、钠等),它们受霍尔效应和物质因热量而产生的熵特性的影响 [4]。在大多数风洞设计中,风洞建设的重点是如何设计收缩
1 简介 讨论风洞中测试室的文献有限。主要原因是由于测试室的静态对称性,设计简单,要么使用圆形、正方形或矩形横截面,也与已经从收缩室流向测试室的流体有关 [1]。与空气动力学测试、湍流研究或风工程中的文章相关,它表明风洞在提供数据以分析样品与流体流动之间的相互作用方面发挥着重要作用。Manan 等人测试了混合动力汽车模型,而 Clarke 等人在设计阶段测试了自动驾驶汽车的空气动力学特性 [2],[3]。其他相关研究包括测试颗粒的液压输送 [4],以及研究磁场对电导率的相互作用,例如液态金属(汞、镓、钠等),它们受霍尔效应和物质因热量而产生的熵特性的影响 [4]。在大多数风洞设计中,风洞建设的重点是如何设计收缩