对DNA的损害是其与活性氧(ROS)相互作用的结果,尤其是羟基自由基。羟基自由基是由芬顿反应由超氧化物阴离子和过氧化氢产生的,在DNA中产生多种修饰。羟基自由基对脱氧核糖部分的氧化攻击将导致从DNA中释放自由碱,从而产生各种糖修改和简单的可浸泡位点(AP位点)的链断裂。实际上,AP位点是ROS产生的DNA损伤的主要类型之一。醛反应性探针(ARP; N'-氨基甲基甲基苯基羟基羟苯二酰D-生物素)与存在于APETES的开环形式上的醛组有特定的反应(图1)。该反应使检测导致醛组形成的DNA修饰是可能的。用过量的ARP试剂处理后,DNA上的所有AP位点均标有生物素残基。这些生物素标记的AP位点可以使用Avidin-Biotin测定法进行定量,然后用过氧化物酶或碱性磷酸酶结合与Avidin的比色检测。DNA损伤定量套件包含所有必要的解决方案,用于检测每1 x 10
在过去的三十年中,帕金森病 (PD) 的深部脑刺激 (DBS) 一直以连续开环方式应用,对特定患者一天内的状态或症状变化没有反应。最近神经刺激器技术的进步使得闭环自适应 DBS (aDBS) 成为 PD 的治疗选择,在不久的将来,刺激将以基于需求的方式进行调整。虽然 aDBS 在治疗运动症状方面具有巨大的临床潜力,但它也带来了更好地了解如何实施它以最大限度地发挥其益处的需求。从这个角度来看,我们根据对几种支持 aDBS 的研究神经刺激器的经验,概述了为 aDBS 编程几个关键参数的注意事项。从本质上讲,aDBS 取决于成功识别相关生物标志物,这些标志物可以实时可靠地测量,并与控制刺激适应的控制策略相结合。然而,诸如刺激允许适应的窗口以及刺激改变的速率等辅助参数对性能的影响同样巨大,并且会根据控制策略和患者而变化。标准化的 aDBS 编程协议对于确保其在临床实践中的有效应用至关重要。
聚合物在现代生活中无处不在,从可穿着的衣服到轮胎胎面和油漆。作为聚合物化学的创新,其应用不断扩大。“聚合原理”是关于聚合物合成的经典文本,已更新以反映最新进步。The fourth edition delves into new topics such as: * Metallocene and post-metallocene catalysts for polymerization * Living polymerizations (radical, cationic, anionic) * Dendrimer, hyperbranched, brush, and other polymer structures * Graft and block copolymers * High-temperature polymers * Inorganic and organometallic polymers * Conducting polymers *开环聚合 *在体内和体外的聚合作用,这种综合资源适合新手和高级学生以及专业人士。它对聚合物合成提供了深入的理解,涵盖了各种聚合方法,反应参数,分子量,分支,交联以及聚合物的化学和物理结构。本书以对每个主题的初学者友好介绍开始,然后再深入研究更高级的概念。该语言在整个过程中保持直接且易于访问。及其广泛的更新“聚合原理”第四版是一本出色的教科书,适用于聚合物化学,化学工程,材料科学的学生,以及这些领域研究人员和从业者的宝贵参考。
摘要。校园内具有开环地热系统流出流的新建筑物为学生驱动的环境化学课程提供了有力的背景。在不到一年的时间里,沿溪流前端的岩石已经开始变成橙色(Rusty),这已成为学生中的好奇心。结果,通过沿流的原子吸收光谱法监测铁和钙浓度,以研究金属沉积过程。沿流沿流中的岩石,流中铁和钙浓度的氧化铁沉积沿流。正如预期的那样,河流和钙的浓度下降了溪流,较小的装饰瀑布后,浓度下降的浓度特别较大。沉积在岩石上的氧化铁的浓度也以与河流溶解的铁下降相似的速度下降,这强烈表明岩石上的沉积是去除铁的主要模式。在运行不到一年的时间里,铁和钙的浓度在进入溪流后立即开始下降,表明该流的前端尚未饱和。环境化学课程计划在随后的几年中重复这些研究,以监视/何时何时饱和,并且沉积过程开始向下游移动。
摘要:近年来,电力系统已从传统发电厂转向可再生能源 (RES) 整合。这一趋势正在许多发展中经济体中形成,包括西非电力联盟 (WAPP)。然而,由于底层可再生能源的多变性和间歇性,RES 的整合强调了电网的安全性和稳定性。电池储能系统 (BESS) 被认为是解决 WAPP 互联输电系统 (WAP-PITS) 中频率控制挑战的一种可能解决方案,有助于适应高水平的 RES。本文分析了 BESS 在 WAPPITS 中提供主要频率控制储备的应用和有效性。分析基于使用基于 WAPPITS 历史频率测量的开环模型进行的数值模拟。简化模型提供了 BESS 装置频率控制和充电状态 (SOC) 恢复逻辑的一阶分析。本研究表明,基于下垂的控制策略仅能对网络中对称和快速的频率振荡作出反应,可能适合调节系统中的 BESS。此外,它还表明,仅部署 BESS 并不能解决频率控制问题,需要对频率控制服务进行深入修订,主要涉及传统发电厂。
脑机接口 (BMI) 旨在通过将神经信号“解码”为行为来恢复脊髓损伤患者的功能。最近,非线性 BMI 解码器的表现优于之前最先进的线性解码器,但很少有研究调查这些非线性方法提供了哪些具体改进。在本研究中,我们比较了时间卷积前馈神经网络 (tcFNN) 和线性方法在开环和闭环设置中如何预测个体手指运动。我们表明,非线性解码器可以生成更自然的运动,产生的速度分布比线性解码器更接近真正的手部控制 85.3%。针对神经网络可能得出不一致解决方案的担忧,我们发现正则化技术将 tcFNN 收敛的一致性提高了 194.6%,同时提高了平均性能和训练速度。最后,我们表明 28 tcFNN 可以利用来自多个任务变体的训练数据来提高泛化能力。这项研究的结果表明,非线性方法可以产生更自然的运动,并显示出在约束较少的任务上进行泛化的潜力。31
认知控制是能够扣留默认的,有力的响应,而有利于更适合自适应的选择。控制缺陷在精神障碍中很常见,包括抑郁,焦虑和成瘾。因此,一种改善认知控制的方法可能在很少有效治疗的疾病中广泛有用。在这里,我们证明了通过人类直接脑刺激对认知控制的一个方面的闭环增强。,我们在接受颅内癫痫监测的参与者执行认知控制/冲突任务时刺激了内部胶囊/纹状体。刺激增强了性能,并且背胶囊/纹状体刺激的影响最大。然后,我们开发了一个框架来检测控制失误并刺激响应。这种闭环方法比开环刺激产生了更大的行为变化,每单位能量的性能变化略有改善。最后,我们使用与现有闭环大脑植入物兼容的功能直接从少量电极的活动中解码了任务性能。我们的发现是一种基于直接修复潜在的认知缺陷的新方法来治疗严重精神障碍的概念证明。
复杂项目的系统架构、技术投资和任务规划方面的战略决策必须平衡成本、风险和性能——可能要经过多年的开发和运营。成本模型用于将项目和系统元素转化为财务考虑。通常会分析不同的任务选项以确定它们之间的相对成本并为开发决策提供参考。成本估算通常预测未来几年的情况,参数通常不确定。因此,进行敏感性分析并检查结果如何响应基本假设的变化非常重要。特定参数的成本敏感性可用于说明项目风险——例如,通过揭示特定参数的微小变化可能导致成本大幅增加。同样,这些分析可以阐明在正在开发的特定系统之外开发能力可以节省成本的领域。本文基于 Jones 使用高级任务成本模型的先前工作,对空间站、月球基地、火星过境栖息地和火星基地的开环和闭环生命支持系统的成本进行了案例研究的敏感性分析。考察了针对每种不同情况估算的成本响应,重点关注难度变化(主观模型输入)的影响。讨论了结果的含义以及在生命周期成本分析中使用敏感性分析的一般观察结果。
本文概述了旋转空间站大型技术演示器的设计。其目的有两个:获取有关大型旋转结构的行为、操作和控制的知识,为未来旋转空间站的设计提供参考;首次在地球轨道上模拟月球、火星、地球和其他太阳系的重力。该设计设想了一个桁架结构,形成一个圆形的开环,类似于一个巨大的呼啦圈。它摒弃了自行车车轮的方法,通过环的圆形结构而不是辐条和轮毂来解决旋转拉力。该环的临时总直径为 217 米,结构横截面积为 8 米。它以一系列角速度上下旋转以模拟不同的重力。微重力发生在静止时,地球重力发生在全速旋转时。低推力发动机提供旋转加速、旋转减速、姿态控制和驻留。光伏毯提供电力。六次发射可将整个技术演示器以存放的分段形式送入轨道,这些分段在地面控制下展开和组装。任务结束时,环将被拆除,其弯曲分段将转换为直梁,以供后续应用。关键词:技术演示器、旋转站、可展开结构、人造重力
含水层热能存储 (ATES) 是一种开环地热系统,允许在地下水中长期存储热能。它是一种有前途的环保能源生产技术,可以减少温室气体 (GHG) 排放。在文献中,很少有关于 ATES 系统在其整个生命周期内造成的温室气体排放的研究。因此,本研究提出了一种新颖的生命周期评估 (LCA) 回归模型,由于其参数结构,该模型可用于各种 ATES 配置。该模型是传统耗时的 LCA 的快速替代方案。结合蒙特卡罗模拟,它可以分析各种假设的 ATES 系统对环境的影响,从而对整个技术进行评估。与基于燃油和天然气的传统供暖系统相比,蒙特卡罗模拟的中值可节省高达 74% 的温室气体。与使用当今电力结构的冷却技术相比,ATES 可以节省高达约 59% 的温室气体排放,同时还具有经济竞争力。考虑到 2050 年的预计电力结构,第二个 LCA 回归模型带来的温室气体减排量高达 97%。我们的敏感性分析结果表明,在规划新系统时,应该优化哪些 ATES 设计参数。特别是,应该仔细考虑最重要的设计参数——运行时间冷却和热泵的性能系数 (COP)。