Q5。 提供帮助的方法,包括:种植蜜蜂/授粉媒介的开花植物,勃起的鸟盒,鸟类喂食器,蝙蝠盒,虫子酒店,刺猬Hibernacula,叶子堆,堆肥,植物树,植物树,植物野花区域,让野生野生,安装池塘等,Q5。提供帮助的方法,包括:种植蜜蜂/授粉媒介的开花植物,勃起的鸟盒,鸟类喂食器,蝙蝠盒,虫子酒店,刺猬Hibernacula,叶子堆,堆肥,植物树,植物树,植物野花区域,让野生野生,安装池塘等,
测量了产率和产量成分。使用土壤植物分析开发(SPAD)阅读和叶子颜色图(LCC)评分来测量估计的L EAF叶绿素含量。使用叶片叶绿素仪测量开花阶段的每种植物的spad仪读数,而在开花阶段和开花后14天,使用LCC测量叶片绿色。植物高度(PHT)是在根提取之前使用尺子测量的。手动计数分ers(TN)和圆锥花序(PN)的数量。使用叶面积计(LICOR LI-3100C)测量每种植物的叶片面积。的芽在收获阶段的每个锅中的根系中分离,并将其放在棕色的信封中,在50°C下干燥48小时,并称重以进行芽干重(SDW)。使用种子鼓风机(757--South Dakota种子鼓风机)分离填充和未填充的谷物。之后,将每个填充的谷物干燥50°C 48小时并称重。另一方面,使用公式计算出尖峰生育能力(%sf)的百分比:%sf =肥沃的尖峰数量(G)/肥沃的尖峰数量 +肥沃的尖峰数量 +无肥料小尖峰的数量。
测量了产率和产量成分。使用土壤植物分析开发(SPAD)阅读和叶子颜色图(LCC)评分来测量估计的L EAF叶绿素含量。使用叶片叶绿素仪测量开花阶段的每种植物的spad仪读数,而在开花阶段和开花后14天,使用LCC测量叶片绿色。植物高度(PHT)是在根提取之前使用尺子测量的。手动计数分ers(TN)和圆锥花序(PN)的数量。使用叶面积计(LICOR LI-3100C)测量每种植物的叶片面积。的芽在收获阶段的每个锅中的根系中分离,并将其放在棕色的信封中,在50°C下干燥48小时,并称重以进行芽干重(SDW)。使用种子鼓风机(757--South Dakota种子鼓风机)分离填充和未填充的谷物。之后,将每个填充的谷物干燥50°C 48小时并称重。另一方面,使用公式计算出尖峰生育能力(%sf)的百分比:%sf =肥沃的尖峰数量(G)/肥沃的尖峰数量 +肥沃的尖峰数量 +无肥料小尖峰的数量。
绣球花属属于绣球花科,属于开花植物山茱萸目,该目早期在菊科中分化,包括几种常用的观赏植物。其中,大叶绣球是苗圃贸易中最有价值的物种之一,但这种作物或密切相关的菊科物种的基因组资源很少。绣球花品种“Veitchii”和“Endless Summer”的两个高质量单倍型解析参考基因组[最高品质为 2.22 千兆碱基对 (Gb)、396 个重叠群、N50 22.8 兆碱基对 (Mb)]被组装并支架到预期的 18 条假染色体中。利用新开发的高质量参考基因组以及其他相关开花植物的高质量基因组,发现核数据支持菊科植物演化支中的单个分歧点,其中山茱萸目和杜鹃花目均与真菊科植物分化。使用 F 1 杂交种群进行基因作图证明了连锁作图与新基因组资源相结合的强大功能,可以识别位于 4 号染色体上的花序形状基因 CYP78A5 和位于 17 号染色体上的导致重花的新基因 BAM3。本研究开发的资源不仅有助于加速绣球花的遗传改良,还有助于了解最大的开花植物群——菊科植物。
对方差的分析显示,除了二级分支的数量,中间叶片的叶柄长度,平均胶囊宽度和平均胶囊厚度外,所研究的22个字符的种质之间存在显着差异。这表明大多数研究字符的种质中存在许多遗传变异。高遗传力与植物高度,初级分支,上叶的长度,开花的天数,天数到50%开花的天数,豆荚轴承区,每株植物的种子产量和细菌斑点反应记录了高遗传进展,表明这些特征是由添加基因效应控制的,从而有效地选择了这些字符的特征,可以进一步繁殖。这项研究中获得的结果将通过繁殖和保存芝麻遗传资源来促进气候友好的芝麻品种的改善。
西班牙南部和北非有许多生产性的温带水果和坚果树种,具有很高的经济相关性。但是,这些果园受到主要种植季节和冬季的温度升高的威胁。大多数温带树木在叶片掉落的时候进入休眠阶段,然后需要暴露于冷却和热量以恢复生长,花朵,并最终携带果实。冬季温度的变化会导致绽放时机的变化。如果未完全满足农业气候的需求,树木可能会显示不规则或抑制的开花,这可能导致产量降低并损害了水果的质量。为了投射未来的气候变化对西班牙和北非果园的影响,我们用四种温带水果和坚果树种(苹果,杏,杏仁,开心果)的开花数据校准了物候模型的现场,从西班牙南部,摩洛哥和突尼斯的四个地点进行了校准,覆盖了49个品种。我们预测了目前和未来的条件,我们预测了开花日期和潜在的绽放失败率(如果不符合农民气候要求)。我们预测了两个时期的布鲁姆日期和潜在的绽放失败率(2035 - 2065,2070 - 2100),四个气候变化情景(SSP126,SSP245,SSP370,SSP370,SSP585),以及全球循环模型的集合(14-18,取决于场景)。此外,我们预计在短期(2035 - 2065年)中,西班牙南部的几种杏品种的未满足的热需求速率增加了,在长期以来(2070 - 2100年)下,突尼斯和西班牙南部西班牙的开心果和杏仁速度在有趣的气候场景下。我们在将来和现在的条件下比较了预计的花朵日期时观察到了两个主要模式:摩洛哥杏仁的不变绽放时间,在突尼斯,杏仁,杏仁,杏仁,西班牙南部的杏仁和杏仁的开花中适度到强烈的延迟,以及摩洛哥的苹果。我们观察到杏和杏仁的物候转移和开花衰竭率在品种中存在显着差异,这表明品种对变暖冬季的韧性有很大差异。
20。定义gibberellins(GA)。21。描述吉布雷素对植物生长的影响。22。列出了Gibberellins作为植物生长调节剂的主要用途,并确定使用的农作物。(细胞伸长,细胞分裂,克服休眠,克服或破坏芽休眠,增加或减少果实集,影响果实的形状,果实成熟,果树上的开花延迟,刺激两年中的开花和刺激,延迟衰老,延迟衰老)23。描述了吉布林蛋白如何刺激植物克服休眠状态。24。认识到,gibberellins的100多种化学结构超过100种,但仅在商业上使用了少数化学结构。25。比较/对比度GA 3和GA 4 GA 7。26。识别主要的gibberellins。27。识别主要作物和GA 4 GA 7的使用。28。确定Ga 3在柑橘中的主要用途。
将近2,000种植物,主要是苔藓,莎草,草和开花植物,形成了苔原的植被。物种的多样性从树线到北部的永久性冰盖逐渐减少。由于气候,多年冻土和夏季短,桦树和柳树等树种是地面覆盖物,它们在这个生物群落中水平生长,而不是向上生长。这还有助于植物从冬季的绝缘雪覆盖中受益。苔原植物需要在有限的时间和阳光允许的时间内快速生长。这使短暂的夏季非常丰富多彩;此时,许多令人惊叹的开花植物,例如矮人的防火道和山地avens,都在开花。随着阳光在北极圈上方的夏季每天24小时闪耀,与南方同行相比,一些北极植物可以在这种间接的光线下生长和发展。居住在苔原上的植物已经适应了短期生长季节,大风,低温,缺乏湿度和低酸性土壤营养水平。它们具有浅根系统,只能在土壤的活跃层或夏季未冷冻的土壤中生长。生长在地面附近,以避开强风,并利用吸收热量的深色土壤和岩石,苔原植物往往会保持短且在土壤上生长,就像紫色的saxifrage,网状叶状的柳树和其他苔原灌木一样。这会捕获单个植物之间的温暖空气并有助于生长。植物保持温暖的另一种方法是让不同的物种挤在一起,或者使一个单个物种以特定的模式(例如玫瑰花塞或厚垫子)生长,例如苔藓campion和三个齿状saxifrage。
该调查是在2020年夏季的圣雄帕尔·克里希·维迪亚佩(Mahatma Phule Krishi Vidyapeeth)园艺园艺系的番茄改善计划的研究农场进行的。数据在36种番茄基因型中表现出显着变化,对于不同的定性和定量特征。The maximum plant height (124.59cm) was recorded in the genotype RHRT-15-21.The genotypes RHRT-15-4, RHRT-15- 17, RHRT-15-19, RHRT-15-20, RHRT-15-21, RHRT-17-1, RHRT-17-2 and RHRT-17-5 were observed indeterminate plant growth habit.在RHRT-15-4中观察到的最大分支机构植物数量-1。基因型RHRT-15-7和RHRT-15-4的早期开花分别需要30天和31天的开花,分别为50%开花。水果植物的number -1在RHRT-15-4和RHRT-15-23中的记录最高。基因型RHRT-15-3(6.91cm)记录了水果的最大极性直径,其次是RHRT-17-9,RHRT-17-4和RHRT-15-14。RHRT-17-9(5.96厘米)显示的最大赤道直径分别为RHRT-15-23和RHRT-15-4。在36种基因型中评估的番茄的果实产量-1差异很大,范围从0.68至1.93 kg植物-1。基因型的一般平均值为1.15 kg。用基因型RHRT-17-10记录了最低水果产量植物-1,而最大的基因型RHRT-15-4。基因型RHRT-15-4的产量最高为51.57 t ha -1。用基因型RHRT-15-24记录了水果的最高TSS含量。这项研究的发现可能会在夏季季节提供有关作物改善计划,蔬菜专家和蔬菜种植者的番茄基因型的表型特征的宝贵信息。