z 概述 AS1642 采用双极工艺,专为高性能锁存检测霍尔效应应用而设计,如家用电器、工业、转子位置传感、无刷直流电机等。霍尔 IC 集成了一个用于磁感应的片上霍尔电压发生器、一个放大霍尔电压的比较器、一个开路集电极输出和一个施密特触发器,以提供开关滞后以抑制噪声,以及一个电压调节器,用于在 3.5V 至 50V 的电源电压下工作。AS1642 设计用于响应交替的北极和南极。当磁通密度 (B) 大于工作点 (B OP ) 时,输出将打开(低),输出保持直到磁通密度 (B) 低于释放点 (B RP ),然后关闭(高)。该设备采用 SIP-3L 封装,额定温度范围为 -40°C 至 125°C。该封装符合 RoHS 规定。
光学透明神经微电极有助于同时从大脑表面进行电生理记录以及神经活动的光学成像和刺激。剩下的挑战是将电极尺寸缩小到单细胞大小并增加密度,以高空间分辨率记录大面积的神经活动,从而捕捉非线性神经动力学。在这里,我们开发了透明石墨烯微电极,它具有超小开口和大而透明的记录区域,视野中没有任何金延伸,高密度微电极阵列高达 256 个通道。我们使用铂纳米粒子来克服石墨烯的量子电容极限,并将微电极直径缩小到 20 μm。引入了层间掺杂的双层石墨烯以防止开路故障。我们进行了多模态实验,将微电极阵列的皮质电位记录与小鼠视觉皮层的双光子钙成像相结合。我们的结果表明,视觉诱发反应在空间上是局部的,适用于高
加利福尼亚大学伯克利工程学院2003年秋季第40周的第8周摘要(通过Farhana Sheikh)电路分析涉及非线性元素§§由于PN连接在本质上是非线性的,因此由PN连接分析产生的电路元素很复杂:例如。i d = i s [exp(qv d /kt)-1]§我们通常通过采用简化的非线性设备模型来简化分析(例如< /div>理想的二极管模型,大信号二极管模型)§图形方法还可以帮助用非线性元素完美整流器模型(理想二极管)分析电路的I-V特征,用于完美的直流或理想二极管的I-V特征。如果相对于所示的参考方向跨二极管施加了负电压,则二极管不会导致任何电流,并且二极管的行为作为开路。二极管被称为“反向偏见”。如果将正电流应用于二极管相对于参考方向,则二极管的行为作为短路,并通过零电压下降的任何电流。
提案人指南 1.0 NASA 行星风成实验室 (PAL) 1.1 什么是 PAL?行星风成实验室 (PAL) 是一种用于在不同行星大气环境下进行风成过程(风吹粒子)控制实验和模拟的设施,包括地球、火星和土星的卫星土卫六。PAL 目前由 NASA 的行星科学部门提供支持(2014 年之前,PAL 由 NASA 的行星地质和地球物理学 (PG&G) 计划提供支持)。PAL 包括位于加利福尼亚州莫菲特菲尔德的 NASA-Ames 研究中心 (ARC) 的设备和设施,亚利桑那州立大学 (ASU) 位于亚利桑那州坦佩,拥有单独的设备来支持 PAL 活动。PAL 包括美国最大的压力室之一,用于进行低压研究。PAL 可在受控实验室条件下对风成过程进行科学研究,并可对 NASA 太阳系任务的航天器仪器和组件进行测试和校准,包括需要大量低气压的任务。PAL 包括:(1) 火星表面风洞 (MARSWIT) 和 (2) 土卫六风洞 (TWT),位于加利福尼亚州山景城 NASA ARC 的结构动力学大楼 (N-242) 内,由亚利桑那州立大学管理。MARSWIT 和 TWT 由 NASA-Ames 的商店、仪器设施和成像服务提供支持。ARC 的 PAL 设施还配备了一名全职技术人员(在 ARC 工作的 ASU 员工),为行星用户提供服务。亚利桑那州立大学坦佩校区的配套设施包括环境压力/温度风洞 (ASUWIT)。ASU 还拥有涡流(尘卷风)发生器 (ASUVG),但目前归富尔顿工程学院所有(可协商用于行星研究)。ASUWIT 是 ASU 地球与空间探索学院 (SESE) 的一部分,由 SESE 教授 Ian Walker 负责运营。ASUWIT 由 ASU 的 Ronald Greeley 中心的工作人员提供支持。NASA-Ames 的火星表面风洞 (MARSWIT) 于 1976 年投入运行,用于研究陆地和火星条件下风夹带粒子的物理学,进行流场建模实验以评估从小岩石到地貌(缩放)如陨石坑等尺度上的风蚀和沉积,并在火星大气条件下测试航天器仪器和其他组件。MARSWIT 是一个 13 米长的开路边界层风洞,位于一个大型环境室内,在 1 巴至 5 毫巴的大气压下运行,在 1 巴时最大速度为 10.5 米/秒,在 5 毫巴时最大速度为 100 米/秒。该风洞采用开路设计,但位于一个大型压力室的地板上,内部高度为 30 米,内部容积为 13,000 立方米。对于低压风洞运行,将腔室密封并抽空,内部的开路风洞在低压环境中运行。抽空如此大腔室的内部压力需要大量电力,这通常非常昂贵。PAL 从热物理设施的蒸汽真空系统获取真空能量,大约 45 分钟内即可抽真空至火星模拟压力 (4 托)。由于真空系统运行成本高,双方达成协议,PAL 几乎只在与其他赞助 NASA-Ames 蒸汽工厂活动的 NASA-Ames 项目/设施合作时才抽真空。这种安排非常经济高效,但需要提前安排低压运行(需要抽空)。除了此协议外,还提供预留真空服务,前提是提供足够的资金并且没有时间安排冲突。
⚫ 2 通道、双向转换器,用于混合模式 I 2 C 应用中 SDA 和 SCL ⚫ 兼容 I 2 C 和 SMBus ⚫ 电压电平转换范围为 0.8V 至 5.5V 和 2.2V 至 5.5V ⚫ 端口 A 工作电源电压范围为 0.8V 至 5.5V(正常电平) ⚫ 端口 B 工作电源电压范围为 2.2V 至 5.5V(静态偏移电平) ⚫ 5V 容限 I 2 C 总线和使能引脚 ⚫ 0Hz 至 1000kHz 时钟频率(由于中继器增加的延迟,最大系统工作频率可能低于 1000kHz) ⚫ 以 V CCB 为参考的高电平有效中继器使能输入 ⚫ 漏极开路输入/输出 ⚫ 无锁存操作 ⚫ 支持跨中继器的仲裁和时钟延长 ⚫可适应标准模式、快速模式和快速模式 Plus I 2 C 总线设备、SMBus(标准和高功率模式)、PMBus 和多个主设备 ⚫ 断电高阻抗 I 2 C 总线引脚
摘要 本研究比较了安装在具有 LGA 封装的主板上的 BGA 和 LGA 封装的板级可靠性。评估了 SMT 产量、跌落测试性能和热循环性能。还使用了有限元分析与测量的可靠性测试进行比较。BGA 和 LGA 器件均能很好地自对准,没有开路、短路或不一致的焊点。封装偏离焊盘的距离不得超过 0.200 毫米,焊膏误印必须限制在 0.050 毫米以内。在高达 3042 个温度循环中,焊点没有确认故障。模拟预测 LGA 封装的疲劳寿命应比 BGA 封装长 1.5 倍,因为其周边 I/O 焊盘更大,并且模块内部有额外的接地焊盘。在高达 400 次的跌落测试中没有出现故障。总体而言,这两个模块都表现出了出色的板级可靠性,远远超出了典型的消费产品要求。
抽象的重量减少,极化和开路电势方法用于研究中心脑叶叶提取物对304L奥氏体不锈钢UNS S30403在1 M盐酸中的腐蚀抑制作用。根据极化曲线,热力学和激活参数,这种无毒提取物的表现为混合型抑制剂。体重减轻的计算和电位动力学极化研究都表明1.2 g L -1是叶提取物的最佳浓度。虽然减肥方法在最佳浓度下浸入10和60天后的抑制效率为86.84和75.00%,但极化研究显示,在303和333 K时,极化效率分别为93.08和98.66%的抑制作用。根据Langmuir的吸附等温线,提取物分子粘附在UNS S30403表面上。通过SEM,EDX和XRD测量确认了在UNS S30403表面上的保护膜的存在。叶提取物的抑制作用被认为是提取物浓度,浸入时间和温度的函数。FTIR分析表明,奥氏体不锈钢UNS S30403与Centrosema pubescens叶提取物的分子之间存在相互作用。
基于金属卤化物钙钛矿的串联太阳能电池有望实现超越单结太阳能电池理论极限的功率转换效率。然而,克服宽带隙钙钛矿太阳能电池中存在的显著开路电压不足仍然是实现高效稳定的钙钛矿串联电池的主要障碍。本文报道了一种通过氯化物添加剂设计钙钛矿结晶途径来克服 1.8 eV 钙钛矿太阳能电池挑战的整体方法。结合使用自组装单层作为空穴传输层,实现了 1.25 V 的开路电压和 17.0% 的功率转换效率。阐明了甲基氯化铵添加的关键作用,即促进富含氯化物的中间相的生长,从而引导所需立方钙钛矿相的结晶并诱导更有效的卤化物均质化。形成的 1.8 eV 钙钛矿表现出抑制卤化物偏析和改善的光电性能。
CMT2210LH 是一款低功耗、高性能 OOK RF 接收器,适用于 ISM 频段 315 / 433.92 / 868 / 915 MHz 及附近频点的无线应用。CMT2210LH 是一款真正的即插即用芯片。CMT2210LH 工作在 300 - 960 MHz 频段。通过选择不同频率的晶振可以实现 RF 频率的变化。可以从 RFPDK 接口读取不同 RF 频率对应的晶振频率。该芯片的数据速率范围为 0.5 – 40 kbps,出厂设置优化为 1 - 5 kbps,非常适合与基于编码器或 MCU 的低成本发射器配对。通过在 PCB 上选择 VDD5V 引脚与 VDDL 引脚开路或短路,CMT2210LH 可工作在 3.0 - 5.5 V 和 2.0 - 3.6 V 两个电压范围。芯片工作在 433.92MHz 时,仅消耗 4.5 mA 电流,就能实现-109 dBm 的接收灵敏度,CMT2210LH 接收器与 CMT211x/5x 接收器配合,可以提供高性价比的射频应用解决方案。
CMT2210LH 是一款低功耗、高性能 OOK RF 接收器,适用于 ISM 频段 315 / 433.92 / 868 / 915 MHz 及附近频点的无线应用。CMT2210LH 是一款真正的即插即用芯片。CMT2210LH 工作在 300 - 960 MHz 频段。通过选择不同频率的晶振可以实现 RF 频率的变化。可以从 RFPDK 接口读取不同 RF 频率对应的晶振频率。该芯片的数据速率范围为 0.5 – 40 kbps,出厂设置优化为 1 - 5 kbps,非常适合与基于编码器或 MCU 的低成本发射器配对。通过在 PCB 上选择 VDD5V 引脚与 VDDL 引脚开路或短路,CMT2210LH 可工作在 3.0 - 5.5 V 和 2.0 - 3.6 V 两个电压范围。芯片工作在 433.92MHz 时,仅消耗 4.5 mA 电流,就能实现-109 dBm 的接收灵敏度,CMT2210LH 接收器与 CMT211x/5x 接收器配合,可以提供高性价比的射频应用解决方案。