上述外壳尺寸为典型尺寸。具体尺寸取决于订单数量。 9. ! 注意 9-1.浪涌电流 施加到产品上的浪涌电流(脉冲电流或冲击电流)超过规定的额定电流可能会导致严重故障,例如开路、因温度过高而烧毁。如果施加浪涌电流,请提前联系我们。 9-2. 应用限制 在将我们的产品用于下列需要特别高可靠性的用途之前,请与我们联系,以防止可能直接对第三方的生命、身体或财产造成损害的缺陷。 (1)飞机设备 (2)航空航天设备 (3)海底设备 (4)发电厂控制设备 (5)医疗设备 (6)防灾/防盗设备 (7)交通信号设备 (8)运输设备(汽车、火车、轮船等) (9)数据处理设备 (10)与上述用途具有相似复杂性和/或可靠性要求的用途 10. 注意事项 本产品设计为焊接安装。如需使用导电粘合剂等其他安装方法,请提前咨询我们。 10-1. 焊盘图案设计 标准焊盘尺寸(流动和回流焊接) 焊接 a b c
摘要 — 本文介绍了商用碳化硅 (SiC) MOSFET 器件在高漏源电压下重复性短路应力下的短路 (SC) 性能。研究了两种方案来评估栅源电压 (V GS ) 去极化和短路持续时间 (T SC ) 减少的影响。V GS 去极化可降低功率密度,并允许在增加短路持续时间 T SCmax 的情况下保持安全故障模式 (FTO:开路故障)。结果表明,SiC MOSFET V GS 去极化不会降低 T SCmax 下的短路循环能力。但是,使用 V GS 去极化可以使性能接近 IGBT 稳健性水平,在 T SC =10 µ s 下循环近 1000 次。短路测试期间芯片温度变化的模拟表明,性能下降仍然归因于短路循环期间结温 (TJ ) 的升高,这导致顶部 Al 融合,从而导致厚氧化物中出现裂纹。
警告:应在电力存储和发电装置的多个点使用断路器、隔离开关和保险丝,以有效隔离和保护系统的所有组件,防止整个系统发生故障、短路、极性反转或任何组件故障。保险丝、断路器、接线额定值和值应由既定标准确定,并由认证电工、持牌安装人员和区域法规机构评估。虽然每个 PHI 3.8 电池都包含断路器和内部 BMS,其电路可保护磷酸铁锂电池免受过度充电、过度放电和过载电流的影响,但 PHI 3.8 电池必须始终安装充电控制器和适当的设置,以保护 PHI 3.8 电池免受开路 PV 电压和其他高压充电源的影响。仅靠 PHI 3.8 电池管理系统 (BMS) 和内部断路器无法保护 PHI 3.8 电池免受这些极端电气现象的影响。不遵守安装协议将使保修失效。
耦合器,37.5-42.5 GHz (PSX40D05V2W) PSX40D05V2W 是一款双向合成器,覆盖 37.5-42.5 GHz,如图 6 所示。输入端口设计为直接通过引线键合到功率放大器 MMIC。组合(输出)端口与从部件接地平面侧发射的标准矩形波导兼容。波导通过盖子在合成器输出的顶部进行反向短路。波导盖、终端电阻和电阻盖已预先组装在合成器部件上。提供适合 #0 螺钉(或公制 M1.6)的螺丝孔和适合 1mm 直径引脚的对准特征,以便精确安装到基板上。20 dB 定向耦合器集成在合成器中,带有引线键合接口。耦合端口配置用于监控输出功率(而不是反射功率),并且可以处于开路状态而不会影响性能。定向耦合器的相反端口在内部终止。输入端口设计为具有 90 度(正交)相位差。Nuvotronics 建议在组合两个放大器时将 PSX40D05V2W 组合器与 PSX20D05W(无定向耦合器的组合器)配对作为功率分配器,以保持正确的相位。
●切勿超过制造商提供的最大电压设置。●较宽的温度范围和离网系统充电的可变性,通常建议使用较低电压设定点的更保守的设置。●较低的充电设置可能会将电池充电到〜90-95%的SOC,并防止电池高或电池电压故障,并在电池上施加更少的压力。这可以优化电池周期寿命。●较高的电荷设置可以在电压调节阶段发生细胞平衡,因此可以更平衡细胞。这可以增加电池的可用容量。●更高的开路充电设置可能更适合于每天不会充电的应用程序。●切勿将较高的充电设置用于离网太阳能光伏系统,该系统几乎没有载荷,因为它可以过度充电电池。●应考虑具有较高充电率> C/5的系统或可能断开大负载的系统。这可能导致一个电池电池进入吸收阶段后超过最大电池电压。
在建筑物中广泛使用钢筋,以为混凝土结构提供强度和完整性。然而,这种材料非常容易受到氯化物污染环境中的腐蚀,这增加了结构不稳定性和失败的风险。这项工作表征了硝酸钠,酪蛋白和两个氨基酸(11-氨基酸苯甲酸和P-氨基苯甲酸)在模拟混凝土孔隙溶液中提供的机制和效率。使用电化学技术研究了临界氯化物浓度(C CIRT)中每种抑制剂的性能。开路电位和线性极化用于识别合成孔溶液中的C crit。电位动力学极化和电化学阻抗光谱,以评估C crit中抑制剂的腐蚀活性和钝化机制。结果表明,可以通过适当选择的腐蚀抑制剂来保护加固钢。在这里研究的抑制剂中,酪蛋白显示出最高的腐蚀抑制效率,最小电流密度为9.19×10 -8 µA/cm 2,抑制剂效率超过80%。酪蛋白在孔隙溶液中存在C CIRT的情况下为加固钢提供了消极。
多孔电极理论(PET)通过描述固体颗粒和电解质中的电化学动力学和传输来广泛用于对电池动力学进行建模。标准PET模型依赖于活性材料热力学的黑盒描述,通常是通过拟合开路电位而获得的,该电路不允许对相分开材料进行一致的描述。多相PET(MPET),以使用热力学的白色或灰色盒描述来描述电池,并具有需要从实验数据中估算的其他参数。这项工作分析了MPET模型中参数的可识别性,包括标准动力学和扩散参数,以及用于主动材料自由能的MPET特异性参数。基于合成排放数据,对商用磷酸锂/石墨电池的MPET模型进行了线性化和非线性可识别性分析,该模型识别哪些模型参数是无法识别的,并且仅在不确定性的情况下才能识别哪些参数。可识别的参数控制阶段的分离,反应动力学和电解质传输,但不是固体扩散,与以低速率和高速速率的电解质扩散速率限制一致。本文还提出了减少参数可识别性问题的方法。
电阻器 作者:Christopher Henderson 本月,我们将继续我们的专题文章系列,讨论芯片电阻器。 芯片电阻器通常采用表面贴装封装。这些电阻器包含薄膜或厚膜。厚膜表面贴装电阻器可能在陶瓷基板上使用氧化钌,而薄膜电阻器可能在陶瓷基板上使用镍铬合金 (镍铬合金) 或氧化钽、镍铬合金、钽混合物。这些电阻器可能包含保护涂层,例如上釉或聚合物涂层。工程师通常会将这些电阻器调整为最终电阻值。为了将电阻器连接到电路,封装将包括由焊料制成的端子,焊料覆盖镍、银或用于与电阻膜接口的其他金属。镍是最佳选择,因为它有助于防止在焊接操作过程中界面金属的浸出,从而导致开路。图 1 显示了表面贴装芯片电阻器的横截面。电阻元件位于陶瓷基板上,末端带有端子,环绕陶瓷基板并接触电阻元件。将有保护性釉面或聚合物层覆盖电阻元件。
� 在开始之前,请花几分钟时间完整阅读这些信息/数据表!!� 将高压交流电缆与低压直流信号和供电电缆分开。� 检查控制器的电源电压是否正确接线和保险丝。� 确保控制器电源电压与被驱动阀门上的线圈相同!� 确保您了解软件中的限制、位置和可用调整。� 了解您正在处理的液压回路和预期的性能。� 确保您拥有正确的“工具”来完成预期的工作(即PC、D.V.M. )等等。� 确保您已加载正确的 PC 版本软件并正确运行。� 在进行任何形式的焊接之前,请将本装置与所有其他设备“隔离”。� 检查本装置的所有连接,确保没有短路/开路。� 在指定的工作温度下操作设备,以获得最佳和可靠的性能。� 确保任何未使用的电线/端子都安全端接,并且没有短路在一起。� 在开始任何设置之前,更换 Opto-Link 电池或连接电源适配器。� 如果您不确定如何连接本装置,请联系 Parker Denison 了解更多信息。� 按照本手册中的设置程序操作,以获得最佳操作效果。
抽象的Li-Air电池是最重要的下一代电池之一。2D分层材料的开发丰富了液压电池的材料。在这项工作中,提出了对2d Mosi 2 N 4上Li原子的形象和能量的DFT研究。我们提出2D MOSI 2 N 4作为Li-Air电池的阳极和阴极材料的合适材料。2D MOSI 2 N 4的高元素电导率使它成为阳极的优势,而在2d Mosi 2 N 4上,Li 2 O 2生长的低屏障为其作为阴极材料带来了优势。LI负载的MOSI 2 N 4的最大容量预计为129 mAh/g。对于Li负载的MOSI 2 N 4,阳极电势在较大的LI载荷中稳定(相对于Li Bund)稳定(〜 -0.2 V)(Li%= 12〜75%)。作为阴极,在Li 2 O 2平板的生长过程中,开路阴极电势稳定(相对于Li Bulb的2.8 V)。我们的工作揭示了2D最大相的可能性(M是过渡金属,A是Al或Si,而X是C,N或两者兼而有权)作为金属空气电池材料。