分子 nROH TPSA(Tot) ALOGPS_logP 1,1,1-三氯乙烷 0 0 2.45 1,2-二甲基苯 0 0 3.16 1,4-二甲基苯 0 0 3.15 1,7-二甲基黄嘌呤 0 72.68 -0.63 1-氯-2,2,2-三氟乙烷 0 0 1.82 1-羟基咪达唑仑 1 50.41 3.09 2,2-二甲基丁烷 0 0 3.74 2-甲基戊烷 0 0 3.6 3-甲基己烷 0 0 4.18 3-甲基戊烷 0 0 3.98 4-羟基咪达唑仑 1 50.41 3.05 对乙酰氨基酚 0 49.33 0.51 丙酮0 17.07 -0.29 氨基比林 0 30.17 0.94 异戊巴比妥 0 75.27 1.87 安替比林 0 26.93 1.18 布他西尼 0 64.43 3.05 环己烷 0 0 3.46 环丙烷 0 0 1.56 去甲丙嗪 0 45.2 4.28 去羟肌苷 1 93.03 -1.26 二乙二醇二乙烯基醚 0 27.69 1.26 恩氟醚 0 9.23 2.24 乙醇 1 20.23 -0.4 乙醚 0 9.23 1.12 乙苯 0 0 3.27 氟硝西泮 0 78.49 2.2 氟氧苯 0 9.23 1.7 氟烷 0 0 2.5 茚地那韦 2 118.03 3.26 异丁醇 1 20.23 0.6 异氟烷 0 9.23 2.3 异丙醇 1 20.23 0.04 甲索达嗪 0 72.69 3.83 甲氧氟烷 0 9.23 2.01 甲基环戊烷 0 0 3.15 甲基乙基酮 0 17.07 0.41 米氮平 0 19.37 2.9 间二甲苯 0 0 3.15 奈韦拉平 0 63.57 1.75 N-庚烷 0 0 4.33 N-己烷 0 0 4.02 去甲西泮 0 41.46 2.79
丙烷供应链很复杂,供应源是天然气加工和原油炼油的副产品。在2021年,大约80%的美国丙烷供应起源于天然气液体(NGL)从原始天然气流中去除的天然气加工厂,以产生管道质量的气体。在天然气加工厂去除后,将捕获的NGL混合物发送到NGL“分馏”设施,在该设施中,将其蒸馏成“纯度”产品,包括丙烷,丁烷和乙烷。消费级丙烷(也称为HD-5)是美国销售和分布最广泛的丙烷等级。HD-5通常由丙烯,丁烷和其他组成剩余10%的丙烯,丁烷和其他气体组成至少90%的丙烷。与消费者级丙烷相比,主要用于工业过程中的商业级丙烷和HD-10丙烷的丙烷含量较低。
能源消耗是蒸气压缩制冷系统中的主要问题。在许多商业和住宅应用中,冷却系统现在消耗大量能源。因此,立即需要提高冷却系统的能源效率。这项研究通过将纳米颗粒溶解在聚熟料(POE)油中,创建了三个不同的石墨烯 - 氧化物纳米化剂样品,浓度为0.1、0.3和0.5 g/L。然后,分别使用30、40和50 g R600A(异丁烷)制冷剂的纳米化浓度进行测试。结局与聚滤器(POE)油对比,该油作用是主要的润滑物质。根据结果,在0.3 g/l的0.3 g/l石墨烯 - 氧化物纳米化剂中的40克质量电荷表现出最大的性能,最大制冷效应为0.197719 kW,最高的性能系数(COP)为1.72,系统最低的功率为0.115 kW。因此,纯聚酯(POE)油可以用蒸气压缩系统中的石墨烯 - 氧化纳米化剂代替。
此开放获取由 ScholarWorks@GVSU 本科生研究与创意实践部门免费提供给您。它已被 ScholarWorks@GVSU 授权管理员接受纳入荣誉项目。如需更多信息,请联系 scholarworks@gvsu.edu 。
异三聚体G蛋白在细胞信号传导中起着核心作用,充当可切换的分子调节剂。因此,控制G蛋白活性的药理剂对于促进我们对该信号转导系统的理解至关重要。天然二肽FR900359(FR)和YM-254890(YM)是两个高度特异性且广泛使用的异三聚体GQ/11蛋白的抑制剂。传统上,这些化合物通过防止GTPase和Gα亚基的α-螺旋结构域的分离来抑制GDP解离。在这项工作中,我们确定了与异源三聚体G11结合的FR和YM的高分辨率晶体结构,并用它们来解释它们有效抑制G蛋白信号传导的分子基础。值得注意的是,我们的数据表明,FR和YM也充当Gα和Gβ亚基之间界面的稳定剂,充当稳定整个异质三聚体的“分子粘合剂”。我们的结果揭示了未识别的机械特征,这些特征解释了活细胞中FR和YM如何有效地钝化GQ/11信号传导。
摘要本报告包括演示文稿的内容,并在讨论了德国马丁斯里里德(Martinsried)的德国心脏移植中心的讲习班,以心脏异种移植。描述了受体中基因修饰的供体猪的生产和当前可用性,器官收集期间的保存技术以及免疫抑制方案。针对合适的患者的选择标准,以及针对异种移植物过度生长问题的可能解决方案。显然,对于接收者而言,微生物学安全和密切联系至关重要,并且要解决公众接受临床应用的道德考虑。第一项临床试验将由保罗 - 埃里希(Paul-Ehrlich-Institute)作为德国的国家主管机构进行监督和监督,德国心脏移植中心同意合作选择第一名患者进行心脏异种繁殖。
在部分履行北达科他大学研究生学位的要求中介绍本论文时,我同意该大学的图书馆应自由地进行检查。我进一步同意,教授可以批准大量复制出于学术目的,该教授可以监督我的论文工作,或者在她(或他的)缺席的情况下,由部门主席或研究生研究学院的院长授予。据了解,未经我的书面许可,不得允许任何复制,出版或其他使用本论文或其部分用于经济利益。也可以理解,应在我论文中任何材料制成的任何学术用途中给我和北达科他大学的应有认可。
连续变量量子密钥分发利用电磁场的相干测量,即同差或异差检测。迄今为止开发的最先进的安全性证明依赖于此类测量的理想化数学模型,这些模型假设测量结果是连续且无界的变量。由于物理测量设备的范围和精度有限,这些数学模型仅作为近似值。预计在适当的条件下,使用这些简化模型获得的预测将与实际实验实现高度一致。然而,到目前为止,还缺乏对这种近似引入的误差及其对可组合安全性的影响的定量分析。在这里,我们提出了一种理论来严格解释现实异差检测的实验局限性。我们专注于集体攻击,并为渐近和有限尺寸机制提供安全性证明,后者属于可组合安全性的框架内。在此过程中,我们首次在有限尺寸范围内建立了离散调制连续变量量子密钥分发的可组合安全性。密钥速率的严格界限是通过半定规划获得的,并且不依赖于希尔伯特空间的截断。
在目前的临床前抗肿瘤研究中,普遍缺乏能够快速高效筛选有效抗肿瘤药物的体内模型。斑马鱼作为与人类基因相似度高达 87% 的物种,已被广泛用于模拟人类疾病,被认为是研究癌症发展、增殖和转移的替代经济模型。斑马鱼肿瘤异种移植模型已被有效用于各个层面的癌症药物开发,包括靶标验证和可能参与肿瘤调控的长链非编码 RNA (lncRNA) 的高通量筛选。在这篇综述中,我们全面概述了斑马鱼作为癌细胞生长、迁移、抗肿瘤免疫治疗和抗肿瘤药物筛选的体内模型。此外,一些活性 lncRNA 的调控机制已被确定在癌症的发病机制中发挥作用,但仍有必要利用高效的斑马鱼模型来筛选和进一步了解这些分子在肿瘤发展和迁移中的作用。目前的抗肿瘤疗法受到严重毒性和多药耐药性的限制。迫切需要经济高效的体内研究工具来提高我们的理解并克服这些问题。本文综述了使用斑马鱼模型进行抗肿瘤研究的不同目的。我们讨论了斑马鱼在癌细胞增殖和转移、识别信号通路、癌症药物发现和治疗开发以及毒性研究中的应用。最后,本综述强调了该领域的局限性和未来方向,以有效利用斑马鱼作为癌症治疗开发的高效模型。
• 一种全新独特的化学成分 • 一种不含异氰酸酯、BPA 和皮肤致敏剂的粘合剂 • 符合最新的 SVHC 和 REACH 法规 • 在室温下快速固化,放热反应可控,无需烘干固化,从而减少制造占地面积和二氧化碳排放量 • 易于储存和运输,没有特定的储存先决条件或限制 • 一种解决吸水性和湿气敏感性问题的解决方案,即使在潮湿条件下,也能在各种基材上保持强大的强度和完整性 • 可有效填充粘合应用中复杂或狭窄的间隙 • 能够在中空纤维过滤器灌封应用中具有高渗透性 • 只需最少的设备改动,即可从现有粘合剂系统有效过渡
