可持续航空燃料(SAF)将显着影响航空部门的全球变暖,并且重要的SAF目标正在出现。异丙醇是有希望的SAF化合物DMCO(1,4-二甲基甲基氯辛烷)的先驱,并且已在几种工程的微生物中产生。 最近,假单胞菌Putida成为异丙肾生物生物生物生物生物生物生物生物生物生物生物生物生物生物生物生物生物生物生物量的未来寄主,因为它可以利用廉价的植物生物量。 在这里,我们设计了代谢通用的宿主P. putida来生产异丙醇。 我们采用两种计算建模方法(双光线优化和约束最小切割组)来预测基因敲除靶标并优化P. p. putida中的“ IPP-Bypass”途径,以最大程度地提高异源醇的产生。 Alto gether,在喂养批处理条件下,以3.5 g/L的速度获得了p. p. p. p. p. p.的最高生产滴度。 用于高级生物燃料生产的P. Putida上计算建模和应变工程的这种组合在实现可以使用可再生碳流的生物生产过程中具有至关重要的意义。异丙醇是有希望的SAF化合物DMCO(1,4-二甲基甲基氯辛烷)的先驱,并且已在几种工程的微生物中产生。最近,假单胞菌Putida成为异丙肾生物生物生物生物生物生物生物生物生物生物生物生物生物生物生物生物生物生物生物量的未来寄主,因为它可以利用廉价的植物生物量。在这里,我们设计了代谢通用的宿主P. putida来生产异丙醇。我们采用两种计算建模方法(双光线优化和约束最小切割组)来预测基因敲除靶标并优化P. p. putida中的“ IPP-Bypass”途径,以最大程度地提高异源醇的产生。Alto gether,在喂养批处理条件下,以3.5 g/L的速度获得了p. p. p. p. p. p.的最高生产滴度。用于高级生物燃料生产的P. Putida上计算建模和应变工程的这种组合在实现可以使用可再生碳流的生物生产过程中具有至关重要的意义。
本作品是作为美国政府机构赞助工作的记录而编写的。美国政府及其任何机构、其任何雇员、其任何承包商、分包商或其雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或任何第三方的使用或此类使用的结果做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构、其承包商或分包商对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构、其承包商或分包商的观点和意见。
摘要:低功耗气体传感器对于各种应用至关重要,包括环境监控和便携式物联网(IoT)系统。但是,常规金属氧化物气体传感器的解吸和吸附特性需要补充设备,例如加热器,这对于低功率IoT监测系统并不最佳。基于回忆的传感器(气体)由于其优势,包括高响应,低功耗和室温(RT)操作,已研究为创新的气体传感器。基于Igzo,提议的异丙醇酒精(IPA)气体传感器显示出105 s的检测速度,在RT时为50 ppm的IPA气体的高响应速度为55.15。此外,使用脉冲电压在50 µs中可以快速恢复到初始状态,而无需清除气体。最后,集成了一个低功率电路模块以进行无线信号传输和处理,以确保IOT兼容性。即使整合到IoT系统中,也证明了基于Igzo气体的传感结果的稳定性。这可以在〜0.34兆瓦时实现节能气体分析和实时监测,从而支持通过脉冲偏置恢复。这项研究提供了对物联网气体检测的实用见解,为敏感的低功率传感器提供了无线传感系统。
抽象的果实,例如木瓜,番石榴,香蕉,草莓是高价值食品商品,对更广泛的社区需求巨大,因此它们有可能发展。有必要研究各种科学学科,其中之一是分子生物学方法。DNA是分子生物学研究中的基本元素。DNA提取技术极大地决定了产生的DNA的质量和数量。沉淀中使用的化学溶剂是产生DNA质量和数量的重要因素,因此需要优化。研究的目的是研究异丙醇和乙醇对果实DNA提取的影响。使用的DNA提取方法是厨房套件方法,该方法用于4种柔软的水果:木瓜,番石榴,香蕉和草莓。DNA提取的原理是裂解,降水和纯化。用洗涤剂和NaCl的溶液对裂解过程进行化学进行,并通过搅拌器进行物理进行,直到其均匀,然后使用滤纸进行分离。收集了Aquos相的化学沉淀。降水量。异丙醇提取的结果表现出果实DNA的一致性和数量:木瓜的纤维纤维相当密度,略带柔软,略带柔软,略带褪色的薄草莓和较密集的纤维香蕉。绝对乙醇提取的结果表明了果实DNA的一致性:木瓜纤维相当密度,番石榴纤维是中等的,草莓相当密集,香蕉纤维中等。与异丙醇沉淀相比,用乙醇沉淀用乙醇沉淀的DNA提取会产生更多最佳的DNA团块。关键字:DNA提取;沉淀;优化;水果DNA;简单方法简介
摘要 合理设计气体发酵细菌以获得高产量的生物产品对于可持续的生物经济至关重要。它将使微生物底盘能够更有效地从碳氧化物、氢气和/或木质纤维素原料中再生利用自然资源。迄今为止,合理设计气体发酵细菌(例如改变单个酶的表达水平以获得所需的途径通量)具有挑战性,因为途径设计必须遵循可验证的代谢蓝图,指示应在何处执行干预措施。基于基于约束的热力学和动力学模型的最新进展,我们确定了与异丙醇生产相关的气体发酵产乙酸菌杨氏梭菌中的关键酶。为此,我们整合了一个代谢模型并与蛋白质组学测量结果进行比较,并量化了改善异丙醇生物生产所需的各种途径目标的不确定性。基于计算机热力学优化、最小蛋白质需求分析和基于集成建模的稳健性分析,我们确定了两个最重要的通量控制位点,即乙酰乙酰辅酶A(CoA)转移酶(AACT)和乙酰乙酸脱羧酶(AADC),其过表达可导致异丙醇产量增加。我们的预测指导了迭代途径构建,与初始版本相比,异丙醇产量增加了2.8倍。该工程菌株在气体发酵混合营养条件下进行了进一步测试,当提供CO、CO 2 和果糖作为底物时,可产生超过4 g/L的异丙醇。在仅用CO、CO 2 和H 2 通入的生物反应器环境中,该菌株产生2.4 g/L的异丙醇。我们的工作强调,可以通过定向和精细的途径工程对气体发酵罐进行微调,以实现高产量生物生产。
b'genation 的 C3 和 C2 位尚未开发。在此,我们报道了一种无催化剂获取 1-芳基 2,3-二碘咔唑 [7,8] 的方法,其中涉及碘转位(方案 1D)。值得注意的是,我们的方案允许在三个连续位置 [9] 即 C1、C2 和 C3 对咔唑核心进行可控官能化。环化前体 (碘吲哚基)炔醇 1a \xe2\x80\x93 n 是使用已知程序由适当的吲哚-2-甲醛制备的。[5] 我们的旅程始于研究苯基取代炔醇 1a 作为模型底物的反应(表 1)。 [10] 我们研究了 1a 与几种碘化试剂(如 I 2 、NIS、ICl 和 Ipy 2 BF 4 )的反应。在碳酸钠存在下,在异丙醇中,在 15 °C 下使用 ICl [11] 可有效实现串联碘环化-碘移位。使用 1.1 倍过量的 ICl 可得到三环 2a ,产率为 50%(表 1,条目 5),而使用 2.5 倍过量的 ICl 可得到所需的杂环,产率为 60%(表 1,条目 3)。通过对粗反应混合物进行 TLC 和 1 H NMR 分析观察到总转化率,未检测到副产物或聚合反应。然而,在柱层析纯化 2,3-二碘-咔唑 2a 的过程中观察到一些分解,这可能是导致分离产率适中的原因。值得注意的是,重排的 1-苯基-2,3-二碘-咔唑 2a 是唯一的区域异构体。使用有机碱代替 K 2 CO 3 或不同的溶剂'
1.范围 1.1 范围。本规范涵盖单极和多极、无跳闸、密封、低功率、磁性断路器的要求和测试程序,其额定电流为 0.050 安培至 20.0 安培(含),最高 240 伏、60 赫兹 (Hz) 和 400 Hz 交流电 (ac) 和 50 伏直流电 (dc)(见 6.1 和 6.7)。这些断路器可能还包括辅助触点(见 6.6.1)和用于监控电路的端子。请设计人员注意,这些断路器的一些零部件可能含有纯锡涂层(见 6.5)。1.2 零件或识别号 (PIN)。PIN 将由字母“M”、规格表的基本编号和指定的破折号编号组成(参见 3.1),如下例所示:
已经进行了一项研究,以制造和化学修改Torlon®4000T和Torlon/p84共聚酰胺 - 酰亚胺混合的空心纤维作为异丙醇(IPA)脱水的新材料。已经发现,Torlon/p84混合物是可混杂的,正如通过单玻璃过渡温度(T G S)确认的,这些温度(T G S)通过差分扫描量热法(DSC)检测到。由干式湿旋转工艺制造的纯和混合空心纤维都不显示出对抑制水和IPA诱发的肿胀的能力,而交联的纯Torlon空心纤维仅显示边缘改善。然而,借助p- xylenadiamine,Torlon/P84混合纤维在化学交联修饰后表现出增强的分离性能。据信P- Xylenenediamine诱导的交联反应会导致更大的链条堆积和自由体积的减少。对于85/15 wt。%ipa/h 2 o进料溶液,获得的最高分离系数为185±8,所获得的总渗透量为1000±45 g/m 2 h。 ©2007 Elsevier B.V.保留所有权利。