这项研究提出了以下假设:糖酵解中三氧磷酸异构酶(TIM)是一种量子逻辑门。利用量子力学,我们将蒂姆的二羟基丙酮(DHAP)催化转化为3-磷酸甘油醛(G3P)作为量子操作,参与精确的质子转移。为了探索这种量子行为的更广泛的含义,我们开发了一种量子模型,以评估钠 - 葡萄糖共转运蛋白2抑制剂(SGLT2I)对甲基聚糖形成的影响,这是一种与先进的糖化终极产物相关的有毒副产物(AGES)。我们的模型预测,SGLT2I可以通过降低中间形成的可能性来减少甲基甘氨酸,从而为在临床环境中观察到的保护作用提供了一种机制,包括糖尿病,肾病和心力衰竭的血管和肾脏性。通过将蒂姆重新构图为量子逻辑门,本研究不仅挑战了酶促功能的传统观点,而且为量子生物学开辟了新的途径,对代谢性疾病研究和药物开发的未来产生了深远的影响。此外,考虑到由于量子隧道效率低下而导致的甲基乙二醇,可以假设一种新的“ Noxa patogena”,将其作用解释为量子干扰。
纠正了本文:Oncotarget在本文中调查了对重复图像的担忧。在图3中,面板3D中的小管蛋白带是面板3C中H3带的重复。此外,肌动蛋白频带是早期文章的图4C所示的重复,其中包括两位与Oncotarget论文共同的作者[1]。我们还发现了补充图1(三种Lancap细胞系的AR-V7 Western印迹)在[1]的图7C中与WB带重叠。这两篇文章的对应作者Xuesen Dong博士都说:“这些错误的原因是Haolong Li博士同时一直在研究两份出版物(Oncotarget和Cell and Cell and Death and Disey)。每个项目都涉及大量的蛋白质印迹测定;负载控件的所有图像看起来非常相似,并且很容易放错位置。无论如何,这些小错误并没有影响我们得出的结论。”作者提供了原始的Western印迹,上面有校正数字的日期邮票,并指出图3a肌动蛋白(2 h处理),图3D小管蛋白(第二个面板,293T细胞,用质粒编码AR(F876L)转染的293T细胞(F876L)和补充图1 AR-V7 Blot在图组合过程中被放错了。 使用原始数据获得的校正图3和补充图1如下所示。 作者声明这些更正不会改变本文的结果或结论。使用原始数据获得的校正图3和补充图1如下所示。作者声明这些更正不会改变本文的结果或结论。
topo II WT 、topo II CTD 在染色体组装过程中无法检测到。这些观察结果被解释为 CTD 施加的长停留时间有助于 topo IIα 催化连锁 8,37 和重组试验中的染色单体内缠结 8 。我们推测,对于本研究报告的 topo IIα 刺激的团块形成和 DNA 打结也是如此。尽管直接证据
摘要:21 世纪实验结构生物学面临的挑战之一是观察化学反应的发生。金黄色葡萄球菌 (S. aureus) DNA 旋转酶是一种 IIA 型拓扑异构酶,可产生暂时的双链 DNA 断裂来调节 DNA 拓扑结构。吉泊汀、佐利氟达星和喹诺酮类莫西沙星等药物可以稳定这些通常短暂的 DNA 链断裂并杀死细菌。在相同的 P6 1 空间群 (a = b ≈ 93 Å,c ≈ 412 Å) 中,已解析出含有吉泊汀前体 (2.1 Å GSK2999423) 或双裂 DNA 和佐利氟达星 (或其前体 QPT-1) 的未裂解 DNA 的晶体结构。这表明可能可以观察到该 P6 1 空间群中的两个 DNA 切割步骤(和两个 DNA 连接步骤)。这里,解决了这种晶体形式的 2.58 Å 异常锰数据集,并重新细化了这种晶体形式的四个先前的晶体结构(1.98 Å、2.1 Å、2.5 Å 和 2.65 Å)以阐明晶体接触。这些结构清楚地表明了单一移动金属机制——在附带的(第二篇)论文中提出。先前发表的酵母拓扑异构酶 II 的 2.98 Å 结构,它在晶体二重轴周围具有静态无序,被发表为在一个活性位点包含两种金属。这个 2.98 Å 酵母结构的重新细化坐标与其他 IIA 型拓扑异构酶结构一致,在两个不同的活性位点各只有一个金属离子。
多种 pre|CISION ® exatecan 化合物表现出 FAP 诱导的细胞毒性。用 exatecan、pre|CISION ® exatecan、pre|CISION® exatecan + hFAP 或 pre|CISION ® exatecan + FAPi 处理 CFPAC-1 细胞 72 小时。培养基中血清中的 FAP 活性水平较低,因此具有不同 kcat/Km 的化合物表现出不同的活性;这用于监测化合物特性。调节封端基团 (A) 和自毁连接子 (B) 将改变 FAP 亲和力和化合物特性,如其各自的细胞毒性图所示。
图 4. (A) ZW251 在植入 Hep3B CDX 或 LI1037 PDX 肿瘤的小鼠中的剂量反应活性,每组 8 只小鼠。 (B) ZW251 在植入 HCC PDX 模型的小鼠中以 8 和 16 mg/kg 剂量的活性,每组 3 只小鼠。 (C) 代表性研究显示 ZW251 在植入一系列 HCC PDX 模型的小鼠中以 8 mg/kg 剂量的活性,每组 3 只小鼠。 (D) ZW251 在所有测试的 HCC CDX/PDX 模型中的抗肿瘤活性广度。 8 mg/kg 剂量的抗肿瘤活性通过第 21 天或最接近的可评估时间点的肿瘤生长抑制百分比确定,计算为 [(1-TV 治疗 /TV 载体 ) x 100]。 GPC3 表达通过 codrituzumab 进行 IHC 确定,然后由病理学家评分。
a 罗兹医科大学医学生物学系,波兰罗兹 90 – 151,穆申斯基戈 1 号,罗兹 90 – 214,罗兹医科大学经济与医学信息学系,波兰罗兹 90 – 214,罗兹医科大学生物无机化学系,波兰罗兹 90 – 151,穆申斯基戈 1 号,罗兹 90 – 151,罗兹医科大学医学生物学系学生研究组,波兰罗兹 90 – 151,罗兹医科大学医学生物学系学生研究组,波兰罗兹大学生物与环境保护学院分子生物技术和遗传学系学生研究组,波兰罗兹巴纳恰 12/16 号,罗兹 90 – 237,罗兹大学,滨海环境与社会 UMRi CNRS 7266 LIENSs,拉罗谢尔大学,拉罗谢尔 17042,法国 g波兰罗兹大学生物与环境保护学院分子遗传学系,波莫瑞县 141/143,罗兹 90 – 236 h 波兰罗兹大学生物与环境保护学院分子生物技术与遗传学系,巴纳恰 12/16,罗兹 90 – 237
DNA topoisomerase I acts as supercoiling sensor for transcription elongation in E. coli Authors: Vita Vidmar 1,2,3,4,# , Céline Borde 5,# , Lisa Bruno 5 , Maria Takacs 1,2,3,4 , Claire Batisse 1,2,3,4 , Charlotte Saint-André 1,2,3,4 , Chengjin Zhu 1,2,3,4,OlivierEspéli5,ValérieLamour1,2,3,4,*和Albert Weixlbaumer 1,2,3,4,*摘要:当DNA转录为RNA时,DNA Double Helix会不断解开,并为RNA Polymerase(RNAP)提供访问权限(RNAP)。由于RNAP的下游和上游的DNA过度和扭转,这将诱导DNA超螺旋作为转录长度的函数。使用单粒子冷冻EM和体内测定法,我们研究了细菌RNAP和DNA拓扑异构酶I(topoi)之间的关系,该酶消除了RNAP上游积累的负超高。topoi与RNAP的放松DNA上游结合,表明具有感官作用,等待负超级锅的形成,并涉及托皮伊(Topoi)功能域中的构象转换。在DNA底物上模仿了否定超螺旋的DNA,topoi螺纹将一条线束进入活跃位点进行裂解,同时将互补链与辅助结构域结合。,我们在转录RNAP的背景下提出了一个用于DNA松弛的综合模型。1综合结构生物学系,Institut degénétiqueet de BiologieMoléculaireet Cellulaire(IGBMC)2UniversitédeStrasbourg
层蛋白(NL)。控制基因组与 NL 相互作用的因素在很大程度上仍然难以捉摸。在这里,我们确定 DNA 拓扑异构酶 2 beta(TOP2B)是这些相互作用的调节器。TOP2B 主要与 LAD 间(iLAD)染色质结合,其消耗导致 LAD 和 iLAD 之间的基因组分区部分丢失,这表明其活性可能保护特定 iLAD 免于与 NL 相互作用。TOP2B 消耗对 LAD 与层蛋白 B 受体(LBR)相互作用的影响大于与层蛋白的相互作用。尽管两种蛋白质在基因组中的位置不同,但 LBR 消耗的表型模拟了 TOP2B 消耗的影响。这表明在 NL 组织基因组的互补机制。事实上,TOP2B 和 LBR 的共同消耗会导致部分 LAD/iLAD 倒置,反映了致癌基因诱导衰老的典型变化。我们提出,由 iLAD 中的 TOP2B 和 LAD 中的 LBR 控制的协调轴维持着基因组在 NL 和核内部之间的划分。关键词:层粘连结构域、DNA 拓扑结构、DNA 拓扑异构酶、基因组组织、核外围、层粘连蛋白 B 受体、NE 系链。重点: